Filtros : "Discrete and Continuous Dynamical Systems" "IME" Limpar

Filtros



Refine with date range


  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: MEDIDA DE HAUSDORFF, SISTEMAS DISSIPATIVO, ESPAÇOS MÉTRICOS, TEORIA DAS MEDIDAS, TEORIA DA DIMENSÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLLI, Eduardo e GOUVEIA, Márcio. Hausdorff measures for dissipative Poincaré maps of Cherry flows. Discrete and Continuous Dynamical Systems, p. 21-59, 2026Tradução . . Disponível em: https://doi.org/10.3934/dcds.2025111. Acesso em: 16 nov. 2025.
    • APA

      Colli, E., & Gouveia, M. (2026). Hausdorff measures for dissipative Poincaré maps of Cherry flows. Discrete and Continuous Dynamical Systems, 21-59. doi:10.3934/dcds.2025111
    • NLM

      Colli E, Gouveia M. Hausdorff measures for dissipative Poincaré maps of Cherry flows [Internet]. Discrete and Continuous Dynamical Systems. 2026 ; 21-59.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2025111
    • Vancouver

      Colli E, Gouveia M. Hausdorff measures for dissipative Poincaré maps of Cherry flows [Internet]. Discrete and Continuous Dynamical Systems. 2026 ; 21-59.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2025111
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, João Henrique e DO Ó, João Marcos. Qualitative properties for solutions to conformally invariant fourth order critical systems. Discrete and Continuous Dynamical Systems, v. 43, n. 8, p. 3008-3042, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcds.2023038. Acesso em: 16 nov. 2025.
    • APA

      Andrade, J. H., & do Ó, J. M. (2023). Qualitative properties for solutions to conformally invariant fourth order critical systems. Discrete and Continuous Dynamical Systems, 43( 8), 3008-3042. doi:10.3934/dcds.2023038
    • NLM

      Andrade JH, do Ó JM. Qualitative properties for solutions to conformally invariant fourth order critical systems [Internet]. Discrete and Continuous Dynamical Systems. 2023 ; 43( 8): 3008-3042.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2023038
    • Vancouver

      Andrade JH, do Ó JM. Qualitative properties for solutions to conformally invariant fourth order critical systems [Internet]. Discrete and Continuous Dynamical Systems. 2023 ; 43( 8): 3008-3042.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2023038
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOMONACO, Luna e PETERSEN, Carsten Lunde e SHEN, Weixiao. On parabolic external maps. Discrete and Continuous Dynamical Systems, v. 37, n. 10, p. 5085-5104, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcds.2017220. Acesso em: 16 nov. 2025.
    • APA

      Lomonaco, L., Petersen, C. L., & Shen, W. (2017). On parabolic external maps. Discrete and Continuous Dynamical Systems, 37( 10), 5085-5104. doi:10.3934/dcds.2017220
    • NLM

      Lomonaco L, Petersen CL, Shen W. On parabolic external maps [Internet]. Discrete and Continuous Dynamical Systems. 2017 ; 37( 10): 5085-5104.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2017220
    • Vancouver

      Lomonaco L, Petersen CL, Shen W. On parabolic external maps [Internet]. Discrete and Continuous Dynamical Systems. 2017 ; 37( 10): 5085-5104.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2017220
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: TOPOLOGIA DINÂMICA, ATRATORES, SOLUÇÕES PERIÓDICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CZAJA, Radoslaw e OLIVA, Waldyr Muniz e ROCHA, Carlos. On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, v. 37, n. 7, p. 3601-3623, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcds.2017155. Acesso em: 16 nov. 2025.
    • APA

      Czaja, R., Oliva, W. M., & Rocha, C. (2017). On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, 37( 7), 3601-3623. doi:10.3934/dcds.2017155
    • NLM

      Czaja R, Oliva WM, Rocha C. On a definition of Morse-Smale evolution processes [Internet]. Discrete and Continuous Dynamical Systems. 2017 ; 37( 7): 3601-3623.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2017155
    • Vancouver

      Czaja R, Oliva WM, Rocha C. On a definition of Morse-Smale evolution processes [Internet]. Discrete and Continuous Dynamical Systems. 2017 ; 37( 7): 3601-3623.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2017155
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, SISTEMAS DINÂMICOS HOLOMORFOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EL ABDALAOUI, El Houcein et al. On the Fibonacci complex dynamical systems. Discrete and Continuous Dynamical Systems, v. 36, n. 5, p. 2449-2471, 2016Tradução . . Disponível em: https://doi.org/10.3934/dcds.2016.36.2449. Acesso em: 16 nov. 2025.
    • APA

      El Abdalaoui, E. H., Bonnot, S. P. P., Messaoudi, A., & Sester, O. (2016). On the Fibonacci complex dynamical systems. Discrete and Continuous Dynamical Systems, 36( 5), 2449-2471. doi:10.3934/dcds.2016.36.2449
    • NLM

      El Abdalaoui EH, Bonnot SPP, Messaoudi A, Sester O. On the Fibonacci complex dynamical systems [Internet]. Discrete and Continuous Dynamical Systems. 2016 ; 36( 5): 2449-2471.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2016.36.2449
    • Vancouver

      El Abdalaoui EH, Bonnot SPP, Messaoudi A, Sester O. On the Fibonacci complex dynamical systems [Internet]. Discrete and Continuous Dynamical Systems. 2016 ; 36( 5): 2449-2471.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2016.36.2449
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Tatiane Cardoso e GONSCHOROWSKI, Juliano dos Santos e TAL, Fábio Armando. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete and Continuous Dynamical Systems, v. 35, n. 8, p. 3315-3326, 2015Tradução . . Disponível em: https://doi.org/10.3934/dcds.2015.35.3315. Acesso em: 16 nov. 2025.
    • APA

      Batista, T. C., Gonschorowski, J. dos S., & Tal, F. A. (2015). Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete and Continuous Dynamical Systems, 35( 8), 3315-3326. doi:10.3934/dcds.2015.35.3315
    • NLM

      Batista TC, Gonschorowski J dos S, Tal FA. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit [Internet]. Discrete and Continuous Dynamical Systems. 2015 ; 35( 8): 3315-3326.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2015.35.3315
    • Vancouver

      Batista TC, Gonschorowski J dos S, Tal FA. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit [Internet]. Discrete and Continuous Dynamical Systems. 2015 ; 35( 8): 3315-3326.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2015.35.3315
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e TAL, Fábio Armando. Support of maximizing measures for typical C-O dynamics on compact manifolds. Discrete and Continuous Dynamical Systems, v. 26, n. 3, p. 795-804, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.26.795. Acesso em: 16 nov. 2025.
    • APA

      Addas-Zanata, S., & Tal, F. A. (2010). Support of maximizing measures for typical C-O dynamics on compact manifolds. Discrete and Continuous Dynamical Systems, 26( 3), 795-804. doi:10.3934/dcds.2010.26.795
    • NLM

      Addas-Zanata S, Tal FA. Support of maximizing measures for typical C-O dynamics on compact manifolds [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( 3): 795-804.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2010.26.795
    • Vancouver

      Addas-Zanata S, Tal FA. Support of maximizing measures for typical C-O dynamics on compact manifolds [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( 3): 795-804.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2010.26.795
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, DIFEOMORFISMOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, André Salles de e HALL, Toby. Decoration invariants for horseshoe braids. Discrete and Continuous Dynamical Systems, v. 27, n. 3, p. 863-906, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.27.863. Acesso em: 16 nov. 2025.
    • APA

      Carvalho, A. S. de, & Hall, T. (2010). Decoration invariants for horseshoe braids. Discrete and Continuous Dynamical Systems, 27( 3), 863-906. doi:10.3934/dcds.2010.27.863
    • NLM

      Carvalho AS de, Hall T. Decoration invariants for horseshoe braids [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 27( 3): 863-906.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2010.27.863
    • Vancouver

      Carvalho AS de, Hall T. Decoration invariants for horseshoe braids [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 27( 3): 863-906.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2010.27.863
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOLEDO, Maria do Carmo Pacheco de e OLIVA, Sérgio Muniz. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics. Discrete and Continuous Dynamical Systems, v. 23, n. 3, p. 1041-1060, 2009Tradução . . Disponível em: https://doi.org/10.3934/dcds.2009.23.1041. Acesso em: 16 nov. 2025.
    • APA

      Toledo, M. do C. P. de, & Oliva, S. M. (2009). A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics. Discrete and Continuous Dynamical Systems, 23( 3), 1041-1060. doi:10.3934/dcds.2009.23.1041
    • NLM

      Toledo M do CP de, Oliva SM. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics [Internet]. Discrete and Continuous Dynamical Systems. 2009 ; 23( 3): 1041-1060.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2009.23.1041
    • Vancouver

      Toledo M do CP de, Oliva SM. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics [Internet]. Discrete and Continuous Dynamical Systems. 2009 ; 23( 3): 1041-1060.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2009.23.1041
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador. Stability for the vertical rotation interval of twist mappings. Discrete and Continuous Dynamical Systems, v. 14, n. 4, p. 631-642, 2006Tradução . . Disponível em: https://doi.org/10.3934/dcds.2006.14.631. Acesso em: 16 nov. 2025.
    • APA

      Addas-Zanata, S. (2006). Stability for the vertical rotation interval of twist mappings. Discrete and Continuous Dynamical Systems, 14( 4), 631-642. doi:10.3934/dcds.2006.14.631
    • NLM

      Addas-Zanata S. Stability for the vertical rotation interval of twist mappings [Internet]. Discrete and Continuous Dynamical Systems. 2006 ; 14( 4): 631-642.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2006.14.631
    • Vancouver

      Addas-Zanata S. Stability for the vertical rotation interval of twist mappings [Internet]. Discrete and Continuous Dynamical Systems. 2006 ; 14( 4): 631-642.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2006.14.631
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: EQUAÇÕES INTEGRO-DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Saulo Rabello Maciel de et al. Spatially periodic equilibria for a non local evolution equation. Discrete and Continuous Dynamical Systems, v. 9, n. 4, p. 937-948, 2003Tradução . . Disponível em: https://doi.org/10.3934/dcds.2003.9.937. Acesso em: 16 nov. 2025.
    • APA

      Barros, S. R. M. de, Pereira, A. L., Possani, C., & Simonis, A. (2003). Spatially periodic equilibria for a non local evolution equation. Discrete and Continuous Dynamical Systems, 9( 4), 937-948. doi:10.3934/dcds.2003.9.937
    • NLM

      Barros SRM de, Pereira AL, Possani C, Simonis A. Spatially periodic equilibria for a non local evolution equation [Internet]. Discrete and Continuous Dynamical Systems. 2003 ; 9( 4): 937-948.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2003.9.937
    • Vancouver

      Barros SRM de, Pereira AL, Possani C, Simonis A. Spatially periodic equilibria for a non local evolution equation [Internet]. Discrete and Continuous Dynamical Systems. 2003 ; 9( 4): 937-948.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2003.9.937
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e ZHITOMIRSKII, Michail. On pairs of foliations defined by vector fields in the plane. Discrete and Continuous Dynamical Systems, v. 6, n. 3, p. 741-749, 2000Tradução . . Disponível em: https://doi.org/10.3934/dcds.2000.6.741. Acesso em: 16 nov. 2025.
    • APA

      Sotomayor, J., & Zhitomirskii, M. (2000). On pairs of foliations defined by vector fields in the plane. Discrete and Continuous Dynamical Systems, 6( 3), 741-749. doi:10.3934/dcds.2000.6.741
    • NLM

      Sotomayor J, Zhitomirskii M. On pairs of foliations defined by vector fields in the plane [Internet]. Discrete and Continuous Dynamical Systems. 2000 ; 6( 3): 741-749.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2000.6.741
    • Vancouver

      Sotomayor J, Zhitomirskii M. On pairs of foliations defined by vector fields in the plane [Internet]. Discrete and Continuous Dynamical Systems. 2000 ; 6( 3): 741-749.[citado 2025 nov. 16 ] Available from: https://doi.org/10.3934/dcds.2000.6.741

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025