Filtros : "Differential Geometry and its Applications" "GEOMETRIA SIMPLÉTICA" Limpar

Filtros



Limitar por data


  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 13 nov. 2025.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA SIMPLÉTICA, GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DRUMMOND, T e JOTZ LEAN, Madeleine e ORTIZ, Cristian. VB-algebroid morphisms and representations up to homotopy. Differential Geometry and its Applications, v. 40, p. 332–357, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2015.03.005. Acesso em: 13 nov. 2025.
    • APA

      Drummond, T., Jotz Lean, M., & Ortiz, C. (2015). VB-algebroid morphisms and representations up to homotopy. Differential Geometry and its Applications, 40, 332–357. doi:10.1016/j.difgeo.2015.03.005
    • NLM

      Drummond T, Jotz Lean M, Ortiz C. VB-algebroid morphisms and representations up to homotopy [Internet]. Differential Geometry and its Applications. 2015 ; 40 332–357.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2015.03.005
    • Vancouver

      Drummond T, Jotz Lean M, Ortiz C. VB-algebroid morphisms and representations up to homotopy [Internet]. Differential Geometry and its Applications. 2015 ; 40 332–357.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2015.03.005
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e YEPES, Sandra Maria Zapata. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry. Differential Geometry and its Applications, v. 31, n. 6, p. 775-807, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2013.09.004. Acesso em: 13 nov. 2025.
    • APA

      Forger, F. M., & Yepes, S. M. Z. (2013). Lagrangian distributions and connections in multisymplectic and polysymplectic geometry. Differential Geometry and its Applications, 31( 6), 775-807. doi:10.1016/j.difgeo.2013.09.004
    • NLM

      Forger FM, Yepes SMZ. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry [Internet]. Differential Geometry and its Applications. 2013 ; 31( 6): 775-807.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2013.09.004
    • Vancouver

      Forger FM, Yepes SMZ. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry [Internet]. Differential Geometry and its Applications. 2013 ; 31( 6): 775-807.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2013.09.004
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORRELLI, Vincent e GORODSKI, Claudio. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, v. 21, n. 3, p. 337-347, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2004.05.007. Acesso em: 13 nov. 2025.
    • APA

      Borrelli, V., & Gorodski, C. (2004). Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones. Differential Geometry and its Applications, 21( 3), 337-347. doi:10.1016/j.difgeo.2004.05.007
    • NLM

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007
    • Vancouver

      Borrelli V, Gorodski C. Minimal Legendrian submanifolds of S2n+1 and absolutely area-minimizing cones [Internet]. Differential Geometry and its Applications. 2004 ; 21( 3): 337-347.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2004.05.007

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025