Filtros : "Minerals Engineering" Limpar

Filtros



Refine with date range


  • Source: Minerals Engineering. Unidades: EP, RUSP

    Subjects: HIDROMETALURGIA, TÂNTALO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHACA, Darwin Michell Cheje et al. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes. Minerals Engineering, v. 222, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.109125. Acesso em: 01 dez. 2025.
    • APA

      Machaca, D. M. C., Carvalho, T. C. de, Tenório, J. A. S., & Espinosa, D. C. R. (2025). Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes. Minerals Engineering, 222, 1-19. doi:10.1016/j.mineng.2024.109125
    • NLM

      Machaca DMC, Carvalho TC de, Tenório JAS, Espinosa DCR. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes [Internet]. Minerals Engineering. 2025 ;222 1-19.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.109125
    • Vancouver

      Machaca DMC, Carvalho TC de, Tenório JAS, Espinosa DCR. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes [Internet]. Minerals Engineering. 2025 ;222 1-19.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.109125
  • Source: Minerals Engineering. Unidades: EP, RUSP

    Subjects: VANÁDIO, RESINAS, SOLVENTE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VINCO, José Helber e ESPINOSA, Denise Crocce Romano e TENÓRIO, Jorge Alberto Soares. Purification of vanadium-bearing solutions: a comprehensive review. Minerals Engineering, v. 227, p. 1-17, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2025.109289. Acesso em: 01 dez. 2025.
    • APA

      Vinco, J. H., Espinosa, D. C. R., & Tenório, J. A. S. (2025). Purification of vanadium-bearing solutions: a comprehensive review. Minerals Engineering, 227, 1-17. doi:10.1016/j.mineng.2025.109289
    • NLM

      Vinco JH, Espinosa DCR, Tenório JAS. Purification of vanadium-bearing solutions: a comprehensive review [Internet]. Minerals Engineering. 2025 ;227 1-17.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2025.109289
    • Vancouver

      Vinco JH, Espinosa DCR, Tenório JAS. Purification of vanadium-bearing solutions: a comprehensive review [Internet]. Minerals Engineering. 2025 ;227 1-17.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2025.109289
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MICROTOMOGRAFIA, MINÉRIOS, MINERALOGIA, RAIOS X

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ULIANA, Daniel e ULSEN, Carina. Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture. Minerals Engineering, v. 22, p. 29 , 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.109150. Acesso em: 01 dez. 2025.
    • APA

      Uliana, D., & Ulsen, C. (2025). Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture. Minerals Engineering, 22, 29 . doi:10.1016/j.mineng.2024.109150
    • NLM

      Uliana D, Ulsen C. Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture [Internet]. Minerals Engineering. 2025 ;22 29 .[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.109150
    • Vancouver

      Uliana D, Ulsen C. Mineral liberation by 3D X-ray microtomography and SEM-based image analysis in low-grade iron ores with different mineralogy and texture [Internet]. Minerals Engineering. 2025 ;22 29 .[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.109150
  • Source: Minerals Engineering. Unidades: EP, RUSP

    Subjects: HIDROMETALURGIA, NIÓBIO, ESTANHO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHACA, Darwin Michell Cheje et al. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching. Minerals Engineering, v. 232, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2025.109564. Acesso em: 01 dez. 2025.
    • APA

      Machaca, D. M. C., Salazar, R. B. J., Carvalho, T. C. de, Espinosa, D. C. R., & Tenório, J. A. S. (2025). Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching. Minerals Engineering, 232, 1-11. doi:10.1016/j.mineng.2025.109564
    • NLM

      Machaca DMC, Salazar RBJ, Carvalho TC de, Espinosa DCR, Tenório JAS. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching [Internet]. Minerals Engineering. 2025 ;232 1-11.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2025.109564
    • Vancouver

      Machaca DMC, Salazar RBJ, Carvalho TC de, Espinosa DCR, Tenório JAS. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching [Internet]. Minerals Engineering. 2025 ;232 1-11.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2025.109564
  • Source: Minerals Engineering. Unidade: EP

    Subjects: GRAVIDADE, MINÉRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface. Minerals Engineering, v. 210, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108641. Acesso em: 01 dez. 2025.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Zhou, J., & Galvin, K. P. (2024). Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface. Minerals Engineering, 210, 1-9. doi:10.1016/j.mineng.2024.108641
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface [Internet]. Minerals Engineering. 2024 ;210 1-9.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108641
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part II – Establishing the underpinning partition surface [Internet]. Minerals Engineering. 2024 ;210 1-9.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108641
  • Source: Minerals Engineering. Unidades: RUSP, EP

    Subjects: HIDROMETALURGIA, BAUXITA, LIXIVIAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Luís Henrique do Nascimento dos et al. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal. Minerals Engineering, v. 217, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108946. Acesso em: 01 dez. 2025.
    • APA

      Santos, L. H. do N. dos, Pereira, B. da R., Rosset, M., Espinosa, D. C. R., & Botelho Junior, A. B. (2024). High purity alumina production by leaching-ion exchange process: Design and flowchart proposal. Minerals Engineering, 217, 1-13. doi:10.1016/j.mineng.2024.108946
    • NLM

      Santos LH do N dos, Pereira B da R, Rosset M, Espinosa DCR, Botelho Junior AB. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal [Internet]. Minerals Engineering. 2024 ;217 1-13.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108946
    • Vancouver

      Santos LH do N dos, Pereira B da R, Rosset M, Espinosa DCR, Botelho Junior AB. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal [Internet]. Minerals Engineering. 2024 ;217 1-13.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108946
  • Source: Minerals Engineering.

    Subjects: COMINUIÇÃO, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAMPARANA, Giovanni e KLEIN, B. e BERGERMAN, Maurício Guimarães. Impact of the feed particle size distribution and its packing characteristics on compression comminution. Minerals Engineering, v. 218, p. 10 , 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108934. Acesso em: 01 dez. 2025.
    • APA

      Pamparana, G., Klein, B., & Bergerman, M. G. (2024). Impact of the feed particle size distribution and its packing characteristics on compression comminution. Minerals Engineering, 218, 10 . doi:10.1016/j.mineng.2024.108934
    • NLM

      Pamparana G, Klein B, Bergerman MG. Impact of the feed particle size distribution and its packing characteristics on compression comminution [Internet]. Minerals Engineering. 2024 ; 218 10 .[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108934
    • Vancouver

      Pamparana G, Klein B, Bergerman MG. Impact of the feed particle size distribution and its packing characteristics on compression comminution [Internet]. Minerals Engineering. 2024 ; 218 10 .[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108934
  • Source: Minerals Engineering. Unidade: EP

    Subjects: FLOTAÇÃO, HEMATITA, AMIDO, HIDRODINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Elaine Cristina e CHELGANI, Saeed Chehreh e LEAL FILHO, Laurindo de Salles. A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. Minerals Engineering, v. 209, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108621. Acesso em: 01 dez. 2025.
    • APA

      Andrade, E. C., Chelgani, S. C., & Leal Filho, L. de S. (2024). A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. Minerals Engineering, 209, 1-13. doi:10.1016/j.mineng.2024.108621
    • NLM

      Andrade EC, Chelgani SC, Leal Filho L de S. A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. [Internet]. Minerals Engineering. 2024 ;209 1-13.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108621
    • Vancouver

      Andrade EC, Chelgani SC, Leal Filho L de S. A systematic study on gelatinization efficiency of starch by NaOH for enhanced hematite depression. [Internet]. Minerals Engineering. 2024 ;209 1-13.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2024.108621
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MINÉRIOS, FERRO, FLUIDIZAÇÃO, CISALHAMENTO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters. Minerals Engineering, v. 201, p. 12 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108187. Acesso em: 01 dez. 2025.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Rodrigues, O. M. S., Zhou, J., & Galvin, K. P. (2023). Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters. Minerals Engineering, 201, 12 2023. doi:10.1016/j.mineng.2023.108187
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Rodrigues OMS, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters [Internet]. Minerals Engineering. 2023 ; 201 12 2023.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108187
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Rodrigues OMS, Zhou J, Galvin KP. Gravity separation of fine itabirite iron ore using the Reflux Classifier – Part I – Investigation of continuous steady state separations across a wide range of parameters [Internet]. Minerals Engineering. 2023 ; 201 12 2023.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108187
  • Source: Minerals Engineering. Unidade: EP

    Subjects: MINÉRIOS, BRITAGEM, FLOTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Armando Fernandes da Veiga et al. Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation. Minerals Engineering, v. 199, p. 10 , 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108112. Acesso em: 01 dez. 2025.
    • APA

      Rodrigues, A. F. da V., Delboni Júnior, H., Silva, K., Zhou, J., Galvin, K. P., & Filippov, L. O. (2023). Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation. Minerals Engineering, 199, 10 . doi:10.1016/j.mineng.2023.108112
    • NLM

      Rodrigues AF da V, Delboni Júnior H, Silva K, Zhou J, Galvin KP, Filippov LO. Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation [Internet]. Minerals Engineering. 2023 ; 199 10 .[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108112
    • Vancouver

      Rodrigues AF da V, Delboni Júnior H, Silva K, Zhou J, Galvin KP, Filippov LO. Transforming iron ore processing – Simplifying the comminution and replacing reverse flotation with magnetic and gravity separation [Internet]. Minerals Engineering. 2023 ; 199 10 .[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108112
  • Source: Minerals Engineering. Unidade: EP

    Subjects: LATOSSOLOS, FERTILIZANTES FOSFATADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      METOLINA, Patrícia et al. Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering, v. 201, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108188. Acesso em: 01 dez. 2025.
    • APA

      Metolina, P., Andrade, R. S. de, Ramos, B., & Guardani, R. (2023). Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering, 201, 1-15. doi:10.1016/j.mineng.2023.108188
    • NLM

      Metolina P, Andrade RS de, Ramos B, Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions [Internet]. Minerals Engineering. 2023 ;201 1-15.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108188
    • Vancouver

      Metolina P, Andrade RS de, Ramos B, Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: a study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions [Internet]. Minerals Engineering. 2023 ;201 1-15.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108188
  • Source: Minerals Engineering. Unidade: EP

    Subjects: PROCESSAMENTO DE MINERAIS INDUSTRIAIS, MINÉRIOS, MOAGEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGERMAN, Maurício Guimarães et al. Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test. Minerals Engineering, v. 203, p. 1-9, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108359. Acesso em: 01 dez. 2025.
    • APA

      Bergerman, M. G., Pamparana, G., Delboni Júnior, H., & Klein, B. (2023). Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test. Minerals Engineering, 203, 1-9. doi:10.1016/j.mineng.2023.108359
    • NLM

      Bergerman MG, Pamparana G, Delboni Júnior H, Klein B. Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test [Internet]. Minerals Engineering. 2023 ; 203 1-9.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108359
    • Vancouver

      Bergerman MG, Pamparana G, Delboni Júnior H, Klein B. Development of a simplified test for the determination of the Bond Ball Mill Work Index using a modified Hardgrove test [Internet]. Minerals Engineering. 2023 ; 203 1-9.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108359
  • Source: Minerals Engineering. Unidade: EP

    Subjects: HIDROMETALURGIA, NIÓBIO, TROCA IÔNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Tiago Fernandes de e TENÓRIO, Jorge Alberto Soares e ESPINOSA, Denise Crocce Romano. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources. Minerals Engineering, v. 201, n. 10, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108224. Acesso em: 01 dez. 2025.
    • APA

      Oliveira, T. F. de, Tenório, J. A. S., & Espinosa, D. C. R. (2023). An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources. Minerals Engineering, 201( 10), 1-15. doi:10.1016/j.mineng.2023.108224
    • NLM

      Oliveira TF de, Tenório JAS, Espinosa DCR. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources [Internet]. Minerals Engineering. 2023 ; 201( 10): 1-15.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108224
    • Vancouver

      Oliveira TF de, Tenório JAS, Espinosa DCR. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources [Internet]. Minerals Engineering. 2023 ; 201( 10): 1-15.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2023.108224
  • Source: Minerals Engineering. Unidade: EP

    Subjects: BATERIAS ELÉTRICAS, AUTOMÓVEIS, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIMARÃES, Lucas Fonseca e BOTELHO JUNIOR, Amilton Barbosa e ESPINOSA, Denise Crocce Romano. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, v. 183, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107597. Acesso em: 01 dez. 2025.
    • APA

      Guimarães, L. F., Botelho Junior, A. B., & Espinosa, D. C. R. (2022). Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, 183, 1-14. doi:10.1016/j.mineng.2022.107597
    • NLM

      Guimarães LF, Botelho Junior AB, Espinosa DCR. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent [Internet]. Minerals Engineering. 2022 ; 183 1-14.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2022.107597
    • Vancouver

      Guimarães LF, Botelho Junior AB, Espinosa DCR. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent [Internet]. Minerals Engineering. 2022 ; 183 1-14.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2022.107597
  • Source: Minerals Engineering. Unidade: EP

    Subjects: FLOTAÇÃO DE MINÉRIOS, HEMATITA, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÉLIX, Lizbet León et al. Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation. Minerals Engineering, v. 178, p. 1-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107429. Acesso em: 01 dez. 2025.
    • APA

      Félix, L. L., Moreira, G. F., Leal Filho, L. de S., & Stavale, F. (2022). Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation. Minerals Engineering, 178, 1-10. doi:10.1016/j.mineng.2022.107429
    • NLM

      Félix LL, Moreira GF, Leal Filho L de S, Stavale F. Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation [Internet]. Minerals Engineering. 2022 ;178 1-10.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2022.107429
    • Vancouver

      Félix LL, Moreira GF, Leal Filho L de S, Stavale F. Starch adsorption on hematite surfaces: evidence of the adsorption mechanism dependence on the surface orientation [Internet]. Minerals Engineering. 2022 ;178 1-10.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2022.107429
  • Source: Minerals Engineering. Unidade: EP

    Subjects: VANÁDIO, ADSORÇÃO, RESINAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VINCO, José Helber et al. Purification of an iron contaminated vanadium solution through ion exchange resins. Minerals Engineering, v. 176, n. Ja 2022, p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.107337. Acesso em: 01 dez. 2025.
    • APA

      Vinco, J. H., Botelho Junior, A. B., Duarte, H. A., Espinosa, D. C. R., & Tenório, J. A. S. (2022). Purification of an iron contaminated vanadium solution through ion exchange resins. Minerals Engineering, 176( Ja 2022), 1-11. doi:10.1016/j.mineng.2021.107337
    • NLM

      Vinco JH, Botelho Junior AB, Duarte HA, Espinosa DCR, Tenório JAS. Purification of an iron contaminated vanadium solution through ion exchange resins [Internet]. Minerals Engineering. 2022 ; 176( Ja 2022): 1-11.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.107337
    • Vancouver

      Vinco JH, Botelho Junior AB, Duarte HA, Espinosa DCR, Tenório JAS. Purification of an iron contaminated vanadium solution through ion exchange resins [Internet]. Minerals Engineering. 2022 ; 176( Ja 2022): 1-11.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.107337
  • Source: Minerals Engineering. Unidade: IQ

    Subjects: LÍTIO, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUARTAROLLI, Lucas Fonseca et al. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy. Minerals Engineering, v. 186, p. 1-8 art. 107747, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107747. Acesso em: 01 dez. 2025.
    • APA

      Quartarolli, L. F., Brandão, B. B. N. S., Silveira Junior, A. T., & Nakamura, M. (2022). Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy. Minerals Engineering, 186, 1-8 art. 107747. doi:10.1016/j.mineng.2022.107747
    • NLM

      Quartarolli LF, Brandão BBNS, Silveira Junior AT, Nakamura M. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy [Internet]. Minerals Engineering. 2022 ; 186 1-8 art. 107747.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2022.107747
    • Vancouver

      Quartarolli LF, Brandão BBNS, Silveira Junior AT, Nakamura M. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy [Internet]. Minerals Engineering. 2022 ; 186 1-8 art. 107747.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2022.107747
  • Source: Minerals Engineering. Unidade: EP

    Subjects: FLOTAÇÃO DE MINÉRIOS, REAGENTES, FERRO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Klaydison et al. New perspectives in iron ore flotation: use of collector reagents without depressants in reverse cationic flotation of quartz. Minerals Engineering, v. 170, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.107004. Acesso em: 01 dez. 2025.
    • APA

      Silva, K., Filippov, L. O., Piçarra, A., Flilippova, I. V., Lima, N. P., Skliar, A., et al. (2021). New perspectives in iron ore flotation: use of collector reagents without depressants in reverse cationic flotation of quartz. Minerals Engineering, 170, 1-21. doi:10.1016/j.mineng.2021.107004
    • NLM

      Silva K, Filippov LO, Piçarra A, Flilippova IV, Lima NP, Skliar A, Faustino LM, Leal Filho L de S. New perspectives in iron ore flotation: use of collector reagents without depressants in reverse cationic flotation of quartz [Internet]. Minerals Engineering. 2021 ; 170 1-21.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.107004
    • Vancouver

      Silva K, Filippov LO, Piçarra A, Flilippova IV, Lima NP, Skliar A, Faustino LM, Leal Filho L de S. New perspectives in iron ore flotation: use of collector reagents without depressants in reverse cationic flotation of quartz [Internet]. Minerals Engineering. 2021 ; 170 1-21.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.107004
  • Source: Minerals Engineering. Unidade: EP

    Subjects: TANINO, HEMATITA, QUARTZO, QUÍMICA DE SUPERFÍCIE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOHRY, Arash et al. Tannin: an eco-friendly depressant for the green flotation separation of hematite from quartz. Minerals Engineering, v. 168, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.106917. Acesso em: 01 dez. 2025.
    • APA

      Tohry, A., Dehghan, R., Leal Filho, L. de S., & Chelgani, S. C. (2021). Tannin: an eco-friendly depressant for the green flotation separation of hematite from quartz. Minerals Engineering, 168, 1-11. doi:10.1016/j.mineng.2021.106917
    • NLM

      Tohry A, Dehghan R, Leal Filho L de S, Chelgani SC. Tannin: an eco-friendly depressant for the green flotation separation of hematite from quartz [Internet]. Minerals Engineering. 2021 ; 168 1-11.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.106917
    • Vancouver

      Tohry A, Dehghan R, Leal Filho L de S, Chelgani SC. Tannin: an eco-friendly depressant for the green flotation separation of hematite from quartz [Internet]. Minerals Engineering. 2021 ; 168 1-11.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.106917
  • Source: Minerals Engineering. Unidades: RUSP, EP

    Subjects: DESENVOLVIMENTO SUSTENTÁVEL, REJEITOS DE MINERAÇÃO, METAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTELHO JUNIOR, Amilton Barbosa et al. Recovery of scandium from various sources: a critical review of the state of the art and future prospects. Minerals Engineering, v. 172, p. 1-20, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2021.107148. Acesso em: 01 dez. 2025.
    • APA

      Botelho Junior, A. B., Espinosa, D. C. R., Vaughan, J., & Tenório, J. A. S. (2021). Recovery of scandium from various sources: a critical review of the state of the art and future prospects. Minerals Engineering, 172, 1-20. doi:10.1016/j.mineng.2021.107148
    • NLM

      Botelho Junior AB, Espinosa DCR, Vaughan J, Tenório JAS. Recovery of scandium from various sources: a critical review of the state of the art and future prospects [Internet]. Minerals Engineering. 2021 ; 172 1-20.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.107148
    • Vancouver

      Botelho Junior AB, Espinosa DCR, Vaughan J, Tenório JAS. Recovery of scandium from various sources: a critical review of the state of the art and future prospects [Internet]. Minerals Engineering. 2021 ; 172 1-20.[citado 2025 dez. 01 ] Available from: https://doi.org/10.1016/j.mineng.2021.107148

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025