Filtros : "Electronic Journal of Qualitative Theory of Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, OPERADORES DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Luiz Fernando de Oliveira e CORRÊA JUNIOR, Pablo dos Santos. Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative. Electronic Journal of Qualitative Theory of Differential Equations, v. 2024, n. 72, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2024.1.72. Acesso em: 01 dez. 2025.
    • APA

      Faria, L. F. de O., & Corrêa Junior, P. dos S. (2024). Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative. Electronic Journal of Qualitative Theory of Differential Equations, 2024( 72), 1-27. doi:10.14232/ejqtde.2024.1.72
    • NLM

      Faria LF de O, Corrêa Junior P dos S. Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 72): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.72
    • Vancouver

      Faria LF de O, Corrêa Junior P dos S. Homoclinic solution to zero of a non-autonomous, nonlinear, second order differential equation with quadratic growth on the derivative [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 72): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.72
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e RODERO, Ana Livia e TORREGROSA, Joan. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, v. 2024, n. 43, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2024.1.43. Acesso em: 01 dez. 2025.
    • APA

      Buzzi, C. A., Rodero, A. L., & Torregrosa, J. (2024). 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, 2024( 43), 1-27. doi:10.14232/ejqtde.2024.1.43
    • NLM

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
    • Vancouver

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 01 dez. 2025.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 01 dez. 2025.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 35, p. 1-89, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.35. Acesso em: 01 dez. 2025.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.35
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA, SISTEMAS DINÂMICOS, SISTEMAS DESORDENADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e EUZÉBIO, Rodrigo Donizete. Minimal sets and chaos in planar piecewise smooth vector fields. Electronic Journal of Qualitative Theory of Differential Equations, n. 33, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2020.1.33. Acesso em: 01 dez. 2025.
    • APA

      Carvalho, T. de, & Euzébio, R. D. (2020). Minimal sets and chaos in planar piecewise smooth vector fields. Electronic Journal of Qualitative Theory of Differential Equations, ( 33), 1-15. doi:10.14232/ejqtde.2020.1.33
    • NLM

      Carvalho T de, Euzébio RD. Minimal sets and chaos in planar piecewise smooth vector fields [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2020 ;( 33): 1-15.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2020.1.33
    • Vancouver

      Carvalho T de, Euzébio RD. Minimal sets and chaos in planar piecewise smooth vector fields [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2020 ;( 33): 1-15.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2020.1.33
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCINGER, Matej et al. Linearizability problem of persistent centers. Electronic Journal of Qualitative Theory of Differential Equations, n. 37, p. 1-27, 2018Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2018.1.37. Acesso em: 01 dez. 2025.
    • APA

      Mencinger, M., Fercec, B., Fernandes, W., & Oliveira, R. D. dos S. (2018). Linearizability problem of persistent centers. Electronic Journal of Qualitative Theory of Differential Equations, ( 37), 1-27. doi:10.14232/ejqtde.2018.1.37
    • NLM

      Mencinger M, Fercec B, Fernandes W, Oliveira RD dos S. Linearizability problem of persistent centers [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2018 ;( 37): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2018.1.37
    • Vancouver

      Mencinger M, Fercec B, Fernandes W, Oliveira RD dos S. Linearizability problem of persistent centers [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2018 ;( 37): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2018.1.37
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e PEREIRA, Antônio Luiz e SILVA, Severino da. Existence, regularity and upper semicontinuity of pullback attractors for the evolution process associated to a neural field model. Electronic Journal of Qualitative Theory of Differential Equations, n. 41, p. 1-18, 2017Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2017.1.41. Acesso em: 01 dez. 2025.
    • APA

      Bezerra, F. D. M., Pereira, A. L., & Silva, S. da. (2017). Existence, regularity and upper semicontinuity of pullback attractors for the evolution process associated to a neural field model. Electronic Journal of Qualitative Theory of Differential Equations, ( 41), 1-18. doi:10.14232/ejqtde.2017.1.41
    • NLM

      Bezerra FDM, Pereira AL, Silva S da. Existence, regularity and upper semicontinuity of pullback attractors for the evolution process associated to a neural field model [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2017 ;( 41): 1-18.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2017.1.41
    • Vancouver

      Bezerra FDM, Pereira AL, Silva S da. Existence, regularity and upper semicontinuity of pullback attractors for the evolution process associated to a neural field model [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2017 ;( 41): 1-18.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2017.1.41
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS AUTÔNOMOS, ATRATORES, EQUAÇÕES IMPULSIVAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. A survey on impulsive dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, v. 2016, n. 7, p. 1-27, 2016Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2016.8.7. Acesso em: 01 dez. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2016). A survey on impulsive dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, 2016( 7), 1-27. doi:10.14232/ejqtde.2016.8.7
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. A survey on impulsive dynamical systems [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2016 ; 2016( 7): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2016.8.7
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. A survey on impulsive dynamical systems [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2016 ; 2016( 7): 1-27.[citado 2025 dez. 01 ] Available from: https://doi.org/10.14232/ejqtde.2016.8.7
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernández e AKI, Sueli Mieko Tanaka. Global solutions for abstract functional differential equations with nonlocal conditions. Electronic Journal of Qualitative Theory of Differential Equations, n. 50, p. 1-8, 2009Tradução . . Disponível em: http://www.emis.de/journals/EJQTDE/2009/200950.pdf. Acesso em: 01 dez. 2025.
    • APA

      Morales, E. A. H., & Aki, S. M. T. (2009). Global solutions for abstract functional differential equations with nonlocal conditions. Electronic Journal of Qualitative Theory of Differential Equations, (50), 1-8. Recuperado de http://www.emis.de/journals/EJQTDE/2009/200950.pdf
    • NLM

      Morales EAH, Aki SMT. Global solutions for abstract functional differential equations with nonlocal conditions [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2009 ;(50): 1-8.[citado 2025 dez. 01 ] Available from: http://www.emis.de/journals/EJQTDE/2009/200950.pdf
    • Vancouver

      Morales EAH, Aki SMT. Global solutions for abstract functional differential equations with nonlocal conditions [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2009 ;(50): 1-8.[citado 2025 dez. 01 ] Available from: http://www.emis.de/journals/EJQTDE/2009/200950.pdf
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernández. Existence of solutions for an abstract second-order differential equation with nonlocal conditions. Electronic Journal of Qualitative Theory of Differential Equations, v. 96, p. 1-10, 2009Tradução . . Acesso em: 01 dez. 2025.
    • APA

      Morales, E. A. H. (2009). Existence of solutions for an abstract second-order differential equation with nonlocal conditions. Electronic Journal of Qualitative Theory of Differential Equations, 96, 1-10.
    • NLM

      Morales EAH. Existence of solutions for an abstract second-order differential equation with nonlocal conditions. Electronic Journal of Qualitative Theory of Differential Equations. 2009 ; 96 1-10.[citado 2025 dez. 01 ]
    • Vancouver

      Morales EAH. Existence of solutions for an abstract second-order differential equation with nonlocal conditions. Electronic Journal of Qualitative Theory of Differential Equations. 2009 ; 96 1-10.[citado 2025 dez. 01 ]
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernández e HENRIQUEZ, Hernán R. e SANTOS, José Paulo Carvalho dos. Existence results for abstract partial neutral integro-differential equation with unbounded delay. Electronic Journal of Qualitative Theory of Differential Equations, v. 29, p. 1-23, 2009Tradução . . Acesso em: 01 dez. 2025.
    • APA

      Morales, E. A. H., Henriquez, H. R., & Santos, J. P. C. dos. (2009). Existence results for abstract partial neutral integro-differential equation with unbounded delay. Electronic Journal of Qualitative Theory of Differential Equations, 29, 1-23.
    • NLM

      Morales EAH, Henriquez HR, Santos JPC dos. Existence results for abstract partial neutral integro-differential equation with unbounded delay. Electronic Journal of Qualitative Theory of Differential Equations. 2009 ; 29 1-23.[citado 2025 dez. 01 ]
    • Vancouver

      Morales EAH, Henriquez HR, Santos JPC dos. Existence results for abstract partial neutral integro-differential equation with unbounded delay. Electronic Journal of Qualitative Theory of Differential Equations. 2009 ; 29 1-23.[citado 2025 dez. 01 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025