Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph (2024)
Fonte: Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. Unidade: IME
Assuntos: GRAFOS ALEATÓRIOS, TEORIA DOS GRAFOS, PROCESSOS EM MEIOS ALEATÓRIOS
ABNT
LOGACHOV, Artem e MOGULSKII, Anatolii e YAMBARTSEV, Anatoli. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya, v. 1, n. 2, p. 914-926, 2024Tradução . . Disponível em: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002. Acesso em: 27 nov. 2025.APA
Logachov, A., Mogulskii, A., & Yambartsev, A. (2024). Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya, 1( 2), 914-926. doi:10.33048/semi.2024.21.060NLM
Logachov A, Mogulskii A, Yambartsev A. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph [Internet]. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. 2024 ; 1( 2): 914-926.[citado 2025 nov. 27 ] Available from: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002Vancouver
Logachov A, Mogulskii A, Yambartsev A. Note on normal approximation for number of triangles in heterogeneous Erdos-Renyi graph [Internet]. Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya. 2024 ; 1( 2): 914-926.[citado 2025 nov. 27 ] Available from: https://www.webofscience.com/wos/woscc/full-record/WOS:001396421100002
