Filtros : "Differential Geometry and its Applications" "GEOMETRIA DIFERENCIAL" Limpar

Filtros



Limitar por data


  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTAS, Mateus da Silva Rodrigues. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space. Differential Geometry and its Applications, v. 97, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2024.102201. Acesso em: 15 nov. 2025.
    • APA

      Antas, M. da S. R. (2024). Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space. Differential Geometry and its Applications, 97, 1-14. doi:10.1016/j.difgeo.2024.102201
    • NLM

      Antas M da SR. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space [Internet]. Differential Geometry and its Applications. 2024 ; 97 1-14.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2024.102201
    • Vancouver

      Antas M da SR. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space [Internet]. Differential Geometry and its Applications. 2024 ; 97 1-14.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2024.102201
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, TEORIA DE SISTEMAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e ESCOBOSA, Fernando Maia Nardelli e INAGAKI, Marcelo Kodi. Traveling along horizontal broken geodesics of a homogeneous Finsler submersion. Differential Geometry and its Applications, v. 93, n. artigo 102106, p. 1-22, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2023.102106. Acesso em: 15 nov. 2025.
    • APA

      Alexandrino, M. M., Escobosa, F. M. N., & Inagaki, M. K. (2024). Traveling along horizontal broken geodesics of a homogeneous Finsler submersion. Differential Geometry and its Applications, 93( artigo 102106), 1-22. doi:10.1016/j.difgeo.2023.102106
    • NLM

      Alexandrino MM, Escobosa FMN, Inagaki MK. Traveling along horizontal broken geodesics of a homogeneous Finsler submersion [Internet]. Differential Geometry and its Applications. 2024 ; 93( artigo 102106): 1-22.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2023.102106
    • Vancouver

      Alexandrino MM, Escobosa FMN, Inagaki MK. Traveling along horizontal broken geodesics of a homogeneous Finsler submersion [Internet]. Differential Geometry and its Applications. 2024 ; 93( artigo 102106): 1-22.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2023.102106
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, v. 81, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101862. Acesso em: 15 nov. 2025.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2022). Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, 81, 1-19. doi:10.1016/j.difgeo.2022.101862
    • NLM

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
    • Vancouver

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, PSEUDOGRUPOS, GRUPOIDES, ANÁLISE GLOBAL, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRERA, Alejandro e ORTIZ, Cristian. Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, v. 83, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101898. Acesso em: 15 nov. 2025.
    • APA

      Cabrera, A., & Ortiz, C. (2022). Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, 83. doi:10.1016/j.difgeo.2022.101898
    • NLM

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
    • Vancouver

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: ESPAÇOS DE FINSLER, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e ALVES, Benigno Oliveira e DEHKORDI, Hengameh R. On Finsler transnormal functions. Differential Geometry and its Applications, v. 65, p. 93-107, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2019.03.010. Acesso em: 15 nov. 2025.
    • APA

      Alexandrino, M. M., Alves, B. O., & Dehkordi, H. R. (2019). On Finsler transnormal functions. Differential Geometry and its Applications, 65, 93-107. doi:10.1016/j.difgeo.2019.03.010
    • NLM

      Alexandrino MM, Alves BO, Dehkordi HR. On Finsler transnormal functions [Internet]. Differential Geometry and its Applications. 2019 ; 65 93-107.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2019.03.010
    • Vancouver

      Alexandrino MM, Alves BO, Dehkordi HR. On Finsler transnormal functions [Internet]. Differential Geometry and its Applications. 2019 ; 65 93-107.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2019.03.010
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GRUPOS DE TRANSFORMAÇÕES DE LIE, GEOMETRIA DIFERENCIAL, GRUPOS DE LIE SEMISSIMPLES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio. Highly curved orbit spaces. Differential Geometry and its Applications, v. 63, p. 145-165, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2018.12.009. Acesso em: 15 nov. 2025.
    • APA

      Gorodski, C. (2019). Highly curved orbit spaces. Differential Geometry and its Applications, 63, 145-165. doi:10.1016/j.difgeo.2018.12.009
    • NLM

      Gorodski C. Highly curved orbit spaces [Internet]. Differential Geometry and its Applications. 2019 ; 63 145-165.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2018.12.009
    • Vancouver

      Gorodski C. Highly curved orbit spaces [Internet]. Differential Geometry and its Applications. 2019 ; 63 145-165.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2018.12.009
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REI FILHO, Carlos Gonçalves do e TOJEIRO, Ruy. Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, v. 61, p. 133-146, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2018.08.002. Acesso em: 15 nov. 2025.
    • APA

      Rei Filho, C. G. do, & Tojeiro, R. (2018). Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, 61, 133-146. doi:10.1016/j.difgeo.2018.08.002
    • NLM

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
    • Vancouver

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA SIMPLÉTICA, GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DRUMMOND, T e JOTZ LEAN, Madeleine e ORTIZ, Cristian. VB-algebroid morphisms and representations up to homotopy. Differential Geometry and its Applications, v. 40, p. 332–357, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2015.03.005. Acesso em: 15 nov. 2025.
    • APA

      Drummond, T., Jotz Lean, M., & Ortiz, C. (2015). VB-algebroid morphisms and representations up to homotopy. Differential Geometry and its Applications, 40, 332–357. doi:10.1016/j.difgeo.2015.03.005
    • NLM

      Drummond T, Jotz Lean M, Ortiz C. VB-algebroid morphisms and representations up to homotopy [Internet]. Differential Geometry and its Applications. 2015 ; 40 332–357.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2015.03.005
    • Vancouver

      Drummond T, Jotz Lean M, Ortiz C. VB-algebroid morphisms and representations up to homotopy [Internet]. Differential Geometry and its Applications. 2015 ; 40 332–357.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2015.03.005
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e YEPES, Sandra Maria Zapata. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry. Differential Geometry and its Applications, v. 31, n. 6, p. 775-807, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2013.09.004. Acesso em: 15 nov. 2025.
    • APA

      Forger, F. M., & Yepes, S. M. Z. (2013). Lagrangian distributions and connections in multisymplectic and polysymplectic geometry. Differential Geometry and its Applications, 31( 6), 775-807. doi:10.1016/j.difgeo.2013.09.004
    • NLM

      Forger FM, Yepes SMZ. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry [Internet]. Differential Geometry and its Applications. 2013 ; 31( 6): 775-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2013.09.004
    • Vancouver

      Forger FM, Yepes SMZ. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry [Internet]. Differential Geometry and its Applications. 2013 ; 31( 6): 775-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2013.09.004
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e BRIQUET, Rafael e TOBEN, Dirk. Progress in the theory of singular Riemannian foliations. Differential Geometry and its Applications, v. 31, n. 2, p. 248-267, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2013.01.004. Acesso em: 15 nov. 2025.
    • APA

      Alexandrino, M. M., Briquet, R., & Toben, D. (2013). Progress in the theory of singular Riemannian foliations. Differential Geometry and its Applications, 31( 2), 248-267. doi:10.1016/j.difgeo.2013.01.004
    • NLM

      Alexandrino MM, Briquet R, Toben D. Progress in the theory of singular Riemannian foliations [Internet]. Differential Geometry and its Applications. 2013 ; 31( 2): 248-267.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2013.01.004
    • Vancouver

      Alexandrino MM, Briquet R, Toben D. Progress in the theory of singular Riemannian foliations [Internet]. Differential Geometry and its Applications. 2013 ; 31( 2): 248-267.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2013.01.004
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMARGO, Fernanda Ester Camillo e CHAVES, Rosa Maria dos Santos Barreiro e SOUSA JUNIOR, L. A. M. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space. Differential Geometry and its Applications, v. 26, n. 6, p. 592-599, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2008.04.020. Acesso em: 15 nov. 2025.
    • APA

      Camargo, F. E. C., Chaves, R. M. dos S. B., & Sousa Junior, L. A. M. (2008). Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space. Differential Geometry and its Applications, 26( 6), 592-599. doi:10.1016/j.difgeo.2008.04.020
    • NLM

      Camargo FEC, Chaves RM dos SB, Sousa Junior LAM. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [Internet]. Differential Geometry and its Applications. 2008 ; 26( 6): 592-599.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2008.04.020
    • Vancouver

      Camargo FEC, Chaves RM dos SB, Sousa Junior LAM. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [Internet]. Differential Geometry and its Applications. 2008 ; 26( 6): 592-599.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2008.04.020
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: SISTEMAS DINÂMICOS, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo Alves e SOTOMAYOR, Jorge. Lines of principal curvature around umbilics and Whitney umbrellas. Differential Geometry and its Applications, v. 12, n. 3, p. 253-269, 2000Tradução . . Disponível em: https://doi.org/10.2748/tmj/1178224605. Acesso em: 15 nov. 2025.
    • APA

      Garcia, R. A., & Sotomayor, J. (2000). Lines of principal curvature around umbilics and Whitney umbrellas. Differential Geometry and its Applications, 12( 3), 253-269. doi:10.2748/tmj/1178224605
    • NLM

      Garcia RA, Sotomayor J. Lines of principal curvature around umbilics and Whitney umbrellas [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 15 ] Available from: https://doi.org/10.2748/tmj/1178224605
    • Vancouver

      Garcia RA, Sotomayor J. Lines of principal curvature around umbilics and Whitney umbrellas [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 15 ] Available from: https://doi.org/10.2748/tmj/1178224605
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASIELLO, Antonio e PICCIONE, Paolo. Shortening null geodesics in Lorentzian manifolds: applications to closed light rays. Differential Geometry and its Applications, v. 8, n. 1, p. 47-70, 1998Tradução . . Disponível em: https://doi.org/10.1016/s0926-2245(97)00020-x. Acesso em: 15 nov. 2025.
    • APA

      Masiello, A., & Piccione, P. (1998). Shortening null geodesics in Lorentzian manifolds: applications to closed light rays. Differential Geometry and its Applications, 8( 1), 47-70. doi:10.1016/s0926-2245(97)00020-x
    • NLM

      Masiello A, Piccione P. Shortening null geodesics in Lorentzian manifolds: applications to closed light rays [Internet]. Differential Geometry and its Applications. 1998 ; 8( 1): 47-70.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/s0926-2245(97)00020-x
    • Vancouver

      Masiello A, Piccione P. Shortening null geodesics in Lorentzian manifolds: applications to closed light rays [Internet]. Differential Geometry and its Applications. 1998 ; 8( 1): 47-70.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/s0926-2245(97)00020-x

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025