Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms (2022)
Source: Frontiers in Computational Neuroscience. Unidade: IME
Subjects: TEORIA DOS GRAFOS, NEUROCIÊNCIAS
ABNT
OKU, Amanda Yumi Ambriola et al. Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms. Frontiers in Computational Neuroscience, v. 16, 2022Tradução . . Disponível em: https://doi.org/10.3389/fncom.2022.975743. Acesso em: 06 nov. 2024.APA
Oku, A. Y. A., Barreto, C., Bruneri, G., Brockington, G., Fujita, A., & Sato, J. R. (2022). Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms. Frontiers in Computational Neuroscience, 16. doi:10.3389/fncom.2022.975743NLM
Oku AYA, Barreto C, Bruneri G, Brockington G, Fujita A, Sato JR. Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms [Internet]. Frontiers in Computational Neuroscience. 2022 ; 16[citado 2024 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2022.975743Vancouver
Oku AYA, Barreto C, Bruneri G, Brockington G, Fujita A, Sato JR. Applications of graph theory to the analysis of fNIRS data in hyperscanning paradigms [Internet]. Frontiers in Computational Neuroscience. 2022 ; 16[citado 2024 nov. 06 ] Available from: https://doi.org/10.3389/fncom.2022.975743