A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MICADEI, Kaonan e LANDI, Gabriel Teixeira e LUTZ, Eric. Extracting Bayesian networks from multiple copies of a quantum system. Europhysics Letters, v. 144, n. 6, 2024Tradução . . Disponível em: https://doi.org/10.1209/0295-5075/ad177d. Acesso em: 11 nov. 2024.
APA
Micadei, K., Landi, G. T., & Lutz, E. (2024). Extracting Bayesian networks from multiple copies of a quantum system. Europhysics Letters, 144( 6). doi:10.1209/0295-5075/ad177d
NLM
Micadei K, Landi GT, Lutz E. Extracting Bayesian networks from multiple copies of a quantum system [Internet]. Europhysics Letters. 2024 ; 144( 6):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1209/0295-5075/ad177d
Vancouver
Micadei K, Landi GT, Lutz E. Extracting Bayesian networks from multiple copies of a quantum system [Internet]. Europhysics Letters. 2024 ; 144( 6):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1209/0295-5075/ad177d
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NEGRÃO, Cyro von Zuben de Valega et al. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification. NANOMEDICINE, n. 3, 2024Tradução . . Disponível em: https://doi.org/10.2217/nnm-2023-0225. Acesso em: 11 nov. 2024.
APA
Negrão, C. von Z. de V., Cerize, N. N. P., Justo-Junior, A. da S., Liszbinski, R. B., Meneguetti, G. P., Araujo, L., et al. (2024). HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification. NANOMEDICINE, ( 3). doi:10.2217/nnm-2023-0225
NLM
Negrão C von Z de V, Cerize NNP, Justo-Junior A da S, Liszbinski RB, Meneguetti GP, Araujo L, Rocco SA, Gonçalves K de A, Cornejo DR, Leo P, Perecin C, Adamoski D, Dias SMG. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification [Internet]. NANOMEDICINE. 2024 ;( 3):[citado 2024 nov. 11 ] Available from: https://doi.org/10.2217/nnm-2023-0225
Vancouver
Negrão C von Z de V, Cerize NNP, Justo-Junior A da S, Liszbinski RB, Meneguetti GP, Araujo L, Rocco SA, Gonçalves K de A, Cornejo DR, Leo P, Perecin C, Adamoski D, Dias SMG. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification [Internet]. NANOMEDICINE. 2024 ;( 3):[citado 2024 nov. 11 ] Available from: https://doi.org/10.2217/nnm-2023-0225
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FARIGLIANO, Lucas Martin e RIBEIRO, Fabio Negreiros e DALPIAN, Gustavo Martini. Phase transitions in CsPbBr3: evaluating perovskite behavior over different time scales. Materials Advances, v. 5, n. 14, p. 5794–5801, 2024Tradução . . Acesso em: 11 nov. 2024.
APA
Farigliano, L. M., Ribeiro, F. N., & Dalpian, G. M. (2024). Phase transitions in CsPbBr3: evaluating perovskite behavior over different time scales. Materials Advances, 5( 14), 5794–5801. doi:10.1039/d4ma00216d
NLM
Farigliano LM, Ribeiro FN, Dalpian GM. Phase transitions in CsPbBr3: evaluating perovskite behavior over different time scales. Materials Advances. 2024 ; 5( 14): 5794–5801.[citado 2024 nov. 11 ]
Vancouver
Farigliano LM, Ribeiro FN, Dalpian GM. Phase transitions in CsPbBr3: evaluating perovskite behavior over different time scales. Materials Advances. 2024 ; 5( 14): 5794–5801.[citado 2024 nov. 11 ]
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOUSA, O M et al. Charging behavior of ZnMn2O4 and LiMn2O4 in a zinc- and lithium-ion battery: an ab initio study. Journal of Physics: Energy, p. 025025/1-025025/13, 2024Tradução . . Disponível em: https://doi.org/10.1088/2515-7655/ad39dc. Acesso em: 11 nov. 2024.
APA
Sousa, O. M., Assali, L. V. C., Lalic, M. V., Araujo, C. M., Eriksson, O., Petrilli, H. M., & Klautau, A. B. (2024). Charging behavior of ZnMn2O4 and LiMn2O4 in a zinc- and lithium-ion battery: an ab initio study. Journal of Physics: Energy, 025025/1-025025/13. doi:10.1088/2515-7655/ad39dc
NLM
Sousa OM, Assali LVC, Lalic MV, Araujo CM, Eriksson O, Petrilli HM, Klautau AB. Charging behavior of ZnMn2O4 and LiMn2O4 in a zinc- and lithium-ion battery: an ab initio study [Internet]. Journal of Physics: Energy. 2024 ; 025025/1-025025/13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/2515-7655/ad39dc
Vancouver
Sousa OM, Assali LVC, Lalic MV, Araujo CM, Eriksson O, Petrilli HM, Klautau AB. Charging behavior of ZnMn2O4 and LiMn2O4 in a zinc- and lithium-ion battery: an ab initio study [Internet]. Journal of Physics: Energy. 2024 ; 025025/1-025025/13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/2515-7655/ad39dc
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PUSEP, Yuri A et al. Dynamics of recombination in viscous electron-hole plasma in a mesoscopic GaAs channel. Journal of Physics D, v. 56, n. 17, p. 175301-1-175301-8, 2023Tradução . . Disponível em: https://doi.org/10.1088/1361-6463/acba2a. Acesso em: 11 nov. 2024.
APA
Pusep, Y. A., Teodoro, M. D., Patricio, M. A. T., Jacobsen, G. M., Gusev, G., Levine, A., & Bakarov, A. (2023). Dynamics of recombination in viscous electron-hole plasma in a mesoscopic GaAs channel. Journal of Physics D, 56( 17), 175301-1-175301-8. doi:10.1088/1361-6463/acba2a
NLM
Pusep YA, Teodoro MD, Patricio MAT, Jacobsen GM, Gusev G, Levine A, Bakarov A. Dynamics of recombination in viscous electron-hole plasma in a mesoscopic GaAs channel [Internet]. Journal of Physics D. 2023 ; 56( 17): 175301-1-175301-8.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1361-6463/acba2a
Vancouver
Pusep YA, Teodoro MD, Patricio MAT, Jacobsen GM, Gusev G, Levine A, Bakarov A. Dynamics of recombination in viscous electron-hole plasma in a mesoscopic GaAs channel [Internet]. Journal of Physics D. 2023 ; 56( 17): 175301-1-175301-8.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1361-6463/acba2a
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BALDO, Lucas et al. Zero-frequency supercurrent susceptibility signatures of trivial and topological zero-energy states in nanowire junctions. Superconductor Science and Technology, v. 36, n. 3, 2023Tradução . . Disponível em: https://doi.org/10.1088/1361-6668/acb670. Acesso em: 11 nov. 2024.
APA
Baldo, L., Silva, L. G. G. de V. D. da, Schaffer, A. M. B., & Cayao, J. (2023). Zero-frequency supercurrent susceptibility signatures of trivial and topological zero-energy states in nanowire junctions. Superconductor Science and Technology, 36( 3). doi:10.1088/1361-6668/acb670
NLM
Baldo L, Silva LGG de VD da, Schaffer AMB, Cayao J. Zero-frequency supercurrent susceptibility signatures of trivial and topological zero-energy states in nanowire junctions [Internet]. Superconductor Science and Technology. 2023 ; 36( 3):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1361-6668/acb670
Vancouver
Baldo L, Silva LGG de VD da, Schaffer AMB, Cayao J. Zero-frequency supercurrent susceptibility signatures of trivial and topological zero-energy states in nanowire junctions [Internet]. Superconductor Science and Technology. 2023 ; 36( 3):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1361-6668/acb670
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
RADAELLI, Marco et al. Fisher information of correlated stochastic processes. New Journal of Physics, v. 25, 2023Tradução . . Disponível em: https://doi.org/10.1088/1367-2630/acd321. Acesso em: 11 nov. 2024.
APA
Radaelli, M., Landi, G. T., Modi, K., & Binder, F. C. (2023). Fisher information of correlated stochastic processes. New Journal of Physics, 25. doi:10.1088/1367-2630/acd321
NLM
Radaelli M, Landi GT, Modi K, Binder FC. Fisher information of correlated stochastic processes [Internet]. New Journal of Physics. 2023 ; 25[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1367-2630/acd321
Vancouver
Radaelli M, Landi GT, Modi K, Binder FC. Fisher information of correlated stochastic processes [Internet]. New Journal of Physics. 2023 ; 25[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1367-2630/acd321
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MORAIS, Alysson Ferreira et al. 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate. Chemical Communications, v. 59, n. 91, p. 13571-13574, 2023Tradução . . Disponível em: https://doi.org/10.1039/d3cc03066k. Acesso em: 11 nov. 2024.
APA
Morais, A. F., Silva, I. G. N. da, Ferreira, B. J., Teixeira, A. C., Sree, S. P., Terraschke, H., et al. (2023). 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate. Chemical Communications, 59( 91), 13571-13574. doi:10.1039/d3cc03066k
NLM
Morais AF, Silva IGN da, Ferreira BJ, Teixeira AC, Sree SP, Terraschke H, Garcia FA, Breynaert E, Mustafa D. 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate [Internet]. Chemical Communications. 2023 ; 59( 91): 13571-13574.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/d3cc03066k
Vancouver
Morais AF, Silva IGN da, Ferreira BJ, Teixeira AC, Sree SP, Terraschke H, Garcia FA, Breynaert E, Mustafa D. 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate [Internet]. Chemical Communications. 2023 ; 59( 91): 13571-13574.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/d3cc03066k
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ARAGÓN, Fermin Fidel Herrera e COHEN, Renato e NAGAMINE, Luiz Carlos Camargo Miranda. Evidence of progressive Fe2+ to Fe3+oxidation in Fe2+-doped ZnO nanoparticles. Materials Advances, v. 4, n. 5, p. 1389–1402, 2023Tradução . . Disponível em: https://doi.org/10.1039/D3MA00053B. Acesso em: 11 nov. 2024.
APA
Aragón, F. F. H., Cohen, R., & Nagamine, L. C. C. M. (2023). Evidence of progressive Fe2+ to Fe3+oxidation in Fe2+-doped ZnO nanoparticles. Materials Advances, 4( 5), 1389–1402. doi:10.1039/D3MA00053B
NLM
Aragón FFH, Cohen R, Nagamine LCCM. Evidence of progressive Fe2+ to Fe3+oxidation in Fe2+-doped ZnO nanoparticles [Internet]. Materials Advances. 2023 ; 4( 5): 1389–1402.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D3MA00053B
Vancouver
Aragón FFH, Cohen R, Nagamine LCCM. Evidence of progressive Fe2+ to Fe3+oxidation in Fe2+-doped ZnO nanoparticles [Internet]. Materials Advances. 2023 ; 4( 5): 1389–1402.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D3MA00053B
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
DOUNGMO, Giscard et al. How do layered double hydroxides evolve?: First in situ insights into their synthesis processes. RSC Advances, v. 12, n. 52, p. 33469-33478, 2022Tradução . . Disponível em: https://doi.org/10.1039/D2RA05269E. Acesso em: 11 nov. 2024.
APA
Doungmo, G., Morais, A., Mustafa, D., kamgaing, T., Njanja, E., Etter, M., et al. (2022). How do layered double hydroxides evolve?: First in situ insights into their synthesis processes. RSC Advances, 12( 52), 33469-33478. doi:10.1039/D2RA05269E
NLM
Doungmo G, Morais A, Mustafa D, kamgaing T, Njanja E, Etter M, Tonle IK, Terraschke H. How do layered double hydroxides evolve?: First in situ insights into their synthesis processes [Internet]. RSC Advances. 2022 ; 12( 52): 33469-33478.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D2RA05269E
Vancouver
Doungmo G, Morais A, Mustafa D, kamgaing T, Njanja E, Etter M, Tonle IK, Terraschke H. How do layered double hydroxides evolve?: First in situ insights into their synthesis processes [Internet]. RSC Advances. 2022 ; 12( 52): 33469-33478.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D2RA05269E
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GUSEV, Gennady et al. Transport through the network of topological channels in HgTe based quantum well. 2D Materials, v. 9, n. 1, 2022Tradução . . Disponível em: https://doi.org/10.1088/2053-1583/ac351e. Acesso em: 11 nov. 2024.
APA
Gusev, G., Kvon, Z. D., Kozlov, D. A., Olshanetsky, E. B., Entin, M. V., & Mikhailov, N. N. (2022). Transport through the network of topological channels in HgTe based quantum well. 2D Materials, 9( 1). doi:10.1088/2053-1583/ac351e
NLM
Gusev G, Kvon ZD, Kozlov DA, Olshanetsky EB, Entin MV, Mikhailov NN. Transport through the network of topological channels in HgTe based quantum well [Internet]. 2D Materials. 2022 ; 9( 1):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/2053-1583/ac351e
Vancouver
Gusev G, Kvon ZD, Kozlov DA, Olshanetsky EB, Entin MV, Mikhailov NN. Transport through the network of topological channels in HgTe based quantum well [Internet]. 2D Materials. 2022 ; 9( 1):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/2053-1583/ac351e
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MAGRI, Vagner Roberto et al. Folic acid and sodium folate salts: Thermal behavior and spectroscopic (IR, Raman, and solid-state¹³C NMR) characterization. Spectrochimica Acta A, v. 273, p. 1-13 art. 120981, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.saa.2022.120981. Acesso em: 11 nov. 2024.
APA
Magri, V. R., Rocha, M. A., Matos, C. S. de, Petersen, P. A. D., Leroux, F., Petrilli, H. M., & Constantino, V. R. L. (2022). Folic acid and sodium folate salts: Thermal behavior and spectroscopic (IR, Raman, and solid-state¹³C NMR) characterization. Spectrochimica Acta A, 273, 1-13 art. 120981. doi:10.1016/j.saa.2022.120981
NLM
Magri VR, Rocha MA, Matos CS de, Petersen PAD, Leroux F, Petrilli HM, Constantino VRL. Folic acid and sodium folate salts: Thermal behavior and spectroscopic (IR, Raman, and solid-state¹³C NMR) characterization [Internet]. Spectrochimica Acta A. 2022 ; 273 1-13 art. 120981.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.saa.2022.120981
Vancouver
Magri VR, Rocha MA, Matos CS de, Petersen PAD, Leroux F, Petrilli HM, Constantino VRL. Folic acid and sodium folate salts: Thermal behavior and spectroscopic (IR, Raman, and solid-state¹³C NMR) characterization [Internet]. Spectrochimica Acta A. 2022 ; 273 1-13 art. 120981.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.saa.2022.120981
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NASCIMENTO, Bruno Bueno Ipaves e JUSTO FILHO, João Francisco e ASSALI, Lucy Vitoria Credidio. Functionalized few-layer silicene nanosheets: stability, elastic, structural, and electronic properties. Physical Chemistry Chemical Physics, 2022Tradução . . Disponível em: https://doi.org/10.1039/D1CP05867C. Acesso em: 11 nov. 2024.
APA
Nascimento, B. B. I., Justo Filho, J. F., & Assali, L. V. C. (2022). Functionalized few-layer silicene nanosheets: stability, elastic, structural, and electronic properties. Physical Chemistry Chemical Physics. doi:10.1039/D1CP05867C
NLM
Nascimento BBI, Justo Filho JF, Assali LVC. Functionalized few-layer silicene nanosheets: stability, elastic, structural, and electronic properties [Internet]. Physical Chemistry Chemical Physics. 2022 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1CP05867C
Vancouver
Nascimento BBI, Justo Filho JF, Assali LVC. Functionalized few-layer silicene nanosheets: stability, elastic, structural, and electronic properties [Internet]. Physical Chemistry Chemical Physics. 2022 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1CP05867C
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
DAMASCENO, Daniela Andrade e MIRANDA, Caetano Rodrigues. The role of topological defects on the mechanical properties of single-walled carbon nanotubes. Philosophical Magazine, 2021Tradução . . Disponível em: https://doi.org/10.1080/14786435.2021.1988174. Acesso em: 11 nov. 2024.
APA
Damasceno, D. A., & Miranda, C. R. (2021). The role of topological defects on the mechanical properties of single-walled carbon nanotubes. Philosophical Magazine. doi:10.1080/14786435.2021.1988174
NLM
Damasceno DA, Miranda CR. The role of topological defects on the mechanical properties of single-walled carbon nanotubes [Internet]. Philosophical Magazine. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1080/14786435.2021.1988174
Vancouver
Damasceno DA, Miranda CR. The role of topological defects on the mechanical properties of single-walled carbon nanotubes [Internet]. Philosophical Magazine. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1080/14786435.2021.1988174
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MARCONDES, Michel et al. On the stability of calcium and cadmium based Ruddlesden–Popper and double perovskite structures. Journal of Materials Chemistry C Materials for optical and electronic devices (Journal of Materials Chemistry C), 2021Tradução . . Disponível em: https://doi.org/10.1039/D1TC03947D. Acesso em: 11 nov. 2024.
APA
Marcondes, M., Santos, S. S. dos, Miranda, I., Rocha-Rodrigues, P., Assali, L. V. C., Lopes, A. M. L., et al. (2021). On the stability of calcium and cadmium based Ruddlesden–Popper and double perovskite structures. Journal of Materials Chemistry C Materials for optical and electronic devices (Journal of Materials Chemistry C). doi:10.1039/D1TC03947D
NLM
Marcondes M, Santos SS dos, Miranda I, Rocha-Rodrigues P, Assali LVC, Lopes AML, Araújo JPE de, Petrilli H. On the stability of calcium and cadmium based Ruddlesden–Popper and double perovskite structures [Internet]. Journal of Materials Chemistry C Materials for optical and electronic devices (Journal of Materials Chemistry C). 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1TC03947D
Vancouver
Marcondes M, Santos SS dos, Miranda I, Rocha-Rodrigues P, Assali LVC, Lopes AML, Araújo JPE de, Petrilli H. On the stability of calcium and cadmium based Ruddlesden–Popper and double perovskite structures [Internet]. Journal of Materials Chemistry C Materials for optical and electronic devices (Journal of Materials Chemistry C). 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1TC03947D
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
NANCLARES, Dimy et al. A class of novel luminescent layered double hydroxide nanotubes. RSC Advances, v. 11, n. 40, p. 24747-24751, 2021Tradução . . Disponível em: https://doi.org/10.1039/D1RA03948B. Acesso em: 11 nov. 2024.
APA
Nanclares, D., Morais, A., Calaça, T., Silva, I. G. N. da, & Mustafa, D. (2021). A class of novel luminescent layered double hydroxide nanotubes. RSC Advances, 11( 40), 24747-24751. doi:10.1039/D1RA03948B
NLM
Nanclares D, Morais A, Calaça T, Silva IGN da, Mustafa D. A class of novel luminescent layered double hydroxide nanotubes [Internet]. RSC Advances. 2021 ; 11( 40): 24747-24751.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1RA03948B
Vancouver
Nanclares D, Morais A, Calaça T, Silva IGN da, Mustafa D. A class of novel luminescent layered double hydroxide nanotubes [Internet]. RSC Advances. 2021 ; 11( 40): 24747-24751.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1RA03948B
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANTOS, Samuel Silva dos et al. Spontaneous electric polarization and electric field gradient in hybrid improper ferroelectrics: insights and correlations. Journal of Materials Chemistry C, 2021Tradução . . Disponível em: https://doi.org/10.1039/D1TC00989C. Acesso em: 11 nov. 2024.
APA
Santos, S. S. dos, Marcondes, M., Miranda, I., Rocha-Rodrigues, P., Assali, L. V. C., Lopes, A. M. L., et al. (2021). Spontaneous electric polarization and electric field gradient in hybrid improper ferroelectrics: insights and correlations. Journal of Materials Chemistry C. doi:10.1039/D1TC00989C
NLM
Santos SS dos, Marcondes M, Miranda I, Rocha-Rodrigues P, Assali LVC, Lopes AML, Petrilli H, Araújo JPE de. Spontaneous electric polarization and electric field gradient in hybrid improper ferroelectrics: insights and correlations [Internet]. Journal of Materials Chemistry C. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1TC00989C
Vancouver
Santos SS dos, Marcondes M, Miranda I, Rocha-Rodrigues P, Assali LVC, Lopes AML, Petrilli H, Araújo JPE de. Spontaneous electric polarization and electric field gradient in hybrid improper ferroelectrics: insights and correlations [Internet]. Journal of Materials Chemistry C. 2021 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/D1TC00989C
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ROCCATI, Federico et al. Quantum correlations in PT-symmetric systems. Quantum Science and Technology, v. 6, n. 2, 2021Tradução . . Disponível em: https://doi.org/10.1088/2058-9565/abcfcc. Acesso em: 11 nov. 2024.
APA
Roccati, F., Lorenzo, S., Palma, G. M., Landi, G., Brunelli, M., & Ciccarello, F. (2021). Quantum correlations in PT-symmetric systems. Quantum Science and Technology, 6( 2). doi:10.1088/2058-9565/abcfcc
NLM
Roccati F, Lorenzo S, Palma GM, Landi G, Brunelli M, Ciccarello F. Quantum correlations in PT-symmetric systems [Internet]. Quantum Science and Technology. 2021 ; 6( 2):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/2058-9565/abcfcc
Vancouver
Roccati F, Lorenzo S, Palma GM, Landi G, Brunelli M, Ciccarello F. Quantum correlations in PT-symmetric systems [Internet]. Quantum Science and Technology. 2021 ; 6( 2):[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/2058-9565/abcfcc
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BERNARDINELLI, Oigres D. et al. Mechanism for enhanced oil recovery from carbonate reservoirs by adding copper ions to seawater. Fuel, v. 305, p. 121605-1-121605-8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.fuel.2021.121605. Acesso em: 11 nov. 2024.
APA
Bernardinelli, O. D., Zornio, B. F., Duarte, L. G. T. A., Almeida, J. M. de, Vilela, V. A. L. G., Palma Filho, N. B., et al. (2021). Mechanism for enhanced oil recovery from carbonate reservoirs by adding copper ions to seawater. Fuel, 305, 121605-1-121605-8. doi:10.1016/j.fuel.2021.121605
NLM
Bernardinelli OD, Zornio BF, Duarte LGTA, Almeida JM de, Vilela VALG, Palma Filho NB, Aoki CY, Ruidiaz EM, Lamas LF, Soares GB, Almeida RV de, Miranda PB, Miranda CR, Sabadini E. Mechanism for enhanced oil recovery from carbonate reservoirs by adding copper ions to seawater [Internet]. Fuel. 2021 ; 305 121605-1-121605-8.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.fuel.2021.121605
Vancouver
Bernardinelli OD, Zornio BF, Duarte LGTA, Almeida JM de, Vilela VALG, Palma Filho NB, Aoki CY, Ruidiaz EM, Lamas LF, Soares GB, Almeida RV de, Miranda PB, Miranda CR, Sabadini E. Mechanism for enhanced oil recovery from carbonate reservoirs by adding copper ions to seawater [Internet]. Fuel. 2021 ; 305 121605-1-121605-8.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.fuel.2021.121605
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
HERRERA ARAGON, Fermin Fidel et al. Tailoring the physical and chemical properties of Sn1−xCoxO2 nanoparticles: an experimental and theoretical approach. Physical Chemistry Chemical Physics, v. 22, n. 6, p. 3702-3714, 2020Tradução . . Disponível em: https://doi.org/10.1039/C9CP05928H. Acesso em: 11 nov. 2024.
APA
Herrera Aragon, F. F., Villegas-Lelovsky, L., Cabral, L., Lima, M. P., Aquino, J. C. R., Mathpal, M. C., et al. (2020). Tailoring the physical and chemical properties of Sn1−xCoxO2 nanoparticles: an experimental and theoretical approach. Physical Chemistry Chemical Physics, 22( 6), 3702-3714. doi:10.1039/C9CP05928H
NLM
Herrera Aragon FF, Villegas-Lelovsky L, Cabral L, Lima MP, Aquino JCR, Mathpal MC, Coaquira JAH, Silva SW da, Nagamine LCCM, Parreiras SO, Gastelois PL, Marques GE, Macedo WAA. Tailoring the physical and chemical properties of Sn1−xCoxO2 nanoparticles: an experimental and theoretical approach [Internet]. Physical Chemistry Chemical Physics. 2020 ; 22( 6): 3702-3714.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/C9CP05928H
Vancouver
Herrera Aragon FF, Villegas-Lelovsky L, Cabral L, Lima MP, Aquino JCR, Mathpal MC, Coaquira JAH, Silva SW da, Nagamine LCCM, Parreiras SO, Gastelois PL, Marques GE, Macedo WAA. Tailoring the physical and chemical properties of Sn1−xCoxO2 nanoparticles: an experimental and theoretical approach [Internet]. Physical Chemistry Chemical Physics. 2020 ; 22( 6): 3702-3714.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1039/C9CP05928H