Filtros : "Leite, Jose Galvão" Limpar

Filtros



Refine with date range


  • Source: Statistics. Unidade: ICMC

    Subjects: INFERÊNCIA BAYESIANA, ESTATÍSTICA, ESTATÍSTICA APLICADA, REGRESSÃO LINEAR, ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALASAR, Luis Ernesto B e LOUZADA, Francisco e LEITE, Jose Galvão. On the integrated maximum likelihood estimators for a closed population capture–recapture model with unequal capture probabilities. Statistics, n. 6, p. 1204-1220, 2015Tradução . . Disponível em: https://doi.org/10.1080/02331888.2014.960870. Acesso em: 16 nov. 2024.
    • APA

      Salasar, L. E. B., Louzada, F., & Leite, J. G. (2015). On the integrated maximum likelihood estimators for a closed population capture–recapture model with unequal capture probabilities. Statistics, ( 6), 1204-1220. doi:10.1080/02331888.2014.960870
    • NLM

      Salasar LEB, Louzada F, Leite JG. On the integrated maximum likelihood estimators for a closed population capture–recapture model with unequal capture probabilities [Internet]. Statistics. 2015 ;( 6): 1204-1220.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/02331888.2014.960870
    • Vancouver

      Salasar LEB, Louzada F, Leite JG. On the integrated maximum likelihood estimators for a closed population capture–recapture model with unequal capture probabilities [Internet]. Statistics. 2015 ;( 6): 1204-1220.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1080/02331888.2014.960870
  • Source: Journal of Data Science. Unidades: ICMC, IME

    Assunto: INFERÊNCIA BAYESIANA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMAN, Mari et al. A new long-term survival distribution for cancer data. Journal of Data Science, v. 10, n. 2, p. 241-258, 2012Tradução . . Disponível em: http://www.jds-online.com/volume-10-number-2-april-2012. Acesso em: 16 nov. 2024.
    • APA

      Roman, M., Louzada, F., Cancho, V. G., & Leite, J. G. (2012). A new long-term survival distribution for cancer data. Journal of Data Science, 10( 2), 241-258. Recuperado de http://www.jds-online.com/volume-10-number-2-april-2012
    • NLM

      Roman M, Louzada F, Cancho VG, Leite JG. A new long-term survival distribution for cancer data [Internet]. Journal of Data Science. 2012 ; 10( 2): 241-258.[citado 2024 nov. 16 ] Available from: http://www.jds-online.com/volume-10-number-2-april-2012
    • Vancouver

      Roman M, Louzada F, Cancho VG, Leite JG. A new long-term survival distribution for cancer data [Internet]. Journal of Data Science. 2012 ; 10( 2): 241-258.[citado 2024 nov. 16 ] Available from: http://www.jds-online.com/volume-10-number-2-april-2012
  • Source: Brazilian Journal of Probability and Statistics. Unidade: IME

    Assunto: MODELOS PARA PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALASAR, Luis Ernesto Bueno e LEITE, Jose Galvão e LOUZADA, Francisco. A generalized negative binomial distribution based on an extended Poisson process. Brazilian Journal of Probability and Statistics, v. 24, n. 1, p. 91-90, 2010Tradução . . Disponível em: https://doi.org/10.1214/09-BJPS103. Acesso em: 16 nov. 2024.
    • APA

      Salasar, L. E. B., Leite, J. G., & Louzada, F. (2010). A generalized negative binomial distribution based on an extended Poisson process. Brazilian Journal of Probability and Statistics, 24( 1), 91-90. doi:10.1214/09-BJPS103
    • NLM

      Salasar LEB, Leite JG, Louzada F. A generalized negative binomial distribution based on an extended Poisson process [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 1): 91-90.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1214/09-BJPS103
    • Vancouver

      Salasar LEB, Leite JG, Louzada F. A generalized negative binomial distribution based on an extended Poisson process [Internet]. Brazilian Journal of Probability and Statistics. 2010 ; 24( 1): 91-90.[citado 2024 nov. 16 ] Available from: https://doi.org/10.1214/09-BJPS103

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024