Filtros : "Technische Universität Ilmenau - Institut für Mathematik" Limpar

Filtros



Refine with date range


  • Source: Acta mathematica Universitatis Comenianae. Conference titles: European Conference On Combinatorics, Graph Theory And Applications - EUROCOMB. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGER, Sören et al. The size-Ramsey number of powers of bounded degree trees. Acta mathematica Universitatis Comenianae. Bratislava: Bratislava Ústav aplikovanej matematiky Fakulty matematiky, fyziky a informatiky Univerzity Komenského. Disponível em: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281. Acesso em: 12 nov. 2024. , 2019
    • APA

      Berger, S., Kohayakawa, Y., Maesaka, G. S., Martins, T., Mendonça, W., Mota, G. O., & Parczyk, O. (2019). The size-Ramsey number of powers of bounded degree trees. Acta mathematica Universitatis Comenianae. Bratislava: Bratislava Ústav aplikovanej matematiky Fakulty matematiky, fyziky a informatiky Univerzity Komenského. Recuperado de http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281
    • NLM

      Berger S, Kohayakawa Y, Maesaka GS, Martins T, Mendonça W, Mota GO, Parczyk O. The size-Ramsey number of powers of bounded degree trees [Internet]. Acta mathematica Universitatis Comenianae. 2019 ; 88( 3): 451-456.[citado 2024 nov. 12 ] Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281
    • Vancouver

      Berger S, Kohayakawa Y, Maesaka GS, Martins T, Mendonça W, Mota GO, Parczyk O. The size-Ramsey number of powers of bounded degree trees [Internet]. Acta mathematica Universitatis Comenianae. 2019 ; 88( 3): 451-456.[citado 2024 nov. 12 ] Available from: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281
  • Source: Electronic Notes in Discrete Mathematics. Conference titles: Discrete Mathematics Days 2018. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie e KOHAYAKAWA, Yoshiharu e PERSON, Yury. Near-perfect clique-factors in sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.endm.2018.06.038. Acesso em: 12 nov. 2024. , 2018
    • APA

      Han, J., Kohayakawa, Y., & Person, Y. (2018). Near-perfect clique-factors in sparse pseudorandom graphs. Electronic Notes in Discrete Mathematics. Amsterdam: Elsevier. doi:10.1016/j.endm.2018.06.038
    • NLM

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2018 ; 68 221-226.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.endm.2018.06.038
    • Vancouver

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Electronic Notes in Discrete Mathematics. 2018 ; 68 221-226.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.endm.2018.06.038

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024