Filtros : "Journal of Mathematical Analysis and Applications" Removidos: "2024" "IAU" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2. Journal of Mathematical Analysis and Applications, v. 541, n. artigo 128715, p. 1-15, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128715. Acesso em: 12 nov. 2024.
    • APA

      Galego, E. M. (2025). The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2. Journal of Mathematical Analysis and Applications, 541( artigo 128715), 1-15. doi:10.1016/j.jmaa.2024.128715
    • NLM

      Galego EM. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2 [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 541( artigo 128715): 1-15.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128715
    • Vancouver

      Galego EM. The strongest forms of Banach-Stone theorem to C0(K, n p ) spaces for all n ≥ 3 and p close to 2 [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 541( artigo 128715): 1-15.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128715
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PAŽANIN, Igor e PEREIRA, Marcone Corrêa. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary. Journal of Mathematical Analysis and Applications, v. 1, n. artigo 127062, p. 1-21, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127062. Acesso em: 12 nov. 2024.
    • APA

      Nakasato, J. C., Pažanin, I., & Pereira, M. C. (2023). On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary. Journal of Mathematical Analysis and Applications, 1( artigo 127062), 1-21. doi:10.1016/j.jmaa.2023.127062
    • NLM

      Nakasato JC, Pažanin I, Pereira MC. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 1( artigo 127062): 1-21.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127062
    • Vancouver

      Nakasato JC, Pažanin I, Pereira MC. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 1( artigo 127062): 1-21.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127062
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 12 nov. 2024.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Source: Journal of Mathematical Analysis and Applications. Unidade: EP

    Subjects: CONTROLE ADAPTATIVO, EQUAÇÕES DE HAMILTON-JACOBI, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Oswaldo Luiz do Valle e DUFOUR, François. Adaptive discounted control for piecewise deterministic Markov processes. Journal of Mathematical Analysis and Applications, v. 528, n. 2, p. 1-23, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127517. Acesso em: 12 nov. 2024.
    • APA

      Costa, O. L. do V., & Dufour, F. (2023). Adaptive discounted control for piecewise deterministic Markov processes. Journal of Mathematical Analysis and Applications, 528( 2), 1-23. doi:10.1016/j.jmaa.2023.127517
    • NLM

      Costa OL do V, Dufour F. Adaptive discounted control for piecewise deterministic Markov processes [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 528( 2): 1-23.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127517
    • Vancouver

      Costa OL do V, Dufour F. Adaptive discounted control for piecewise deterministic Markov processes [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 528( 2): 1-23.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127517
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. Topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, v. 527, n. artigo 127445, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127445. Acesso em: 12 nov. 2024.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2023). Topological chaos and statistical triviality. Journal of Mathematical Analysis and Applications, 527( artigo 127445), 1-14. doi:10.1016/j.jmaa.2023.127445
    • NLM

      Saghin R, Sun W, Vargas E. Topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 527( artigo 127445): 1-14.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127445
    • Vancouver

      Saghin R, Sun W, Vargas E. Topological chaos and statistical triviality [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 527( artigo 127445): 1-14.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127445
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Disponível em 2025-11-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes dos e ALVES, Claudianor Oliveira e MASSA, Eugenio Tommaso. A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N'. Journal of Mathematical Analysis and Applications, v. No 2023, n. 1, p. 1-20, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127432. Acesso em: 12 nov. 2024.
    • APA

      Santos, J. A. dos, Alves, C. O., & Massa, E. T. (2023). A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N'. Journal of Mathematical Analysis and Applications, No 2023( 1), 1-20. doi:10.1016/j.jmaa.2023.127432
    • NLM

      Santos JA dos, Alves CO, Massa ET. A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N' [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 1): 1-20.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127432
    • Vancouver

      Santos JA dos, Alves CO, Massa ET. A nonsmooth variational approach to semipositone quasilinear problems in 'R POT. N' [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 1): 1-20.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127432
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUSSAN, Martha P e FRANCO FILHO, Antonio de Padua e SANTOS, Rodrigo Silva dos. Spacelike minimal surfaces which are graphs in R14. Journal of Mathematical Analysis and Applications, v. 519, n. artigo 126791, p. 1-23, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2022.126791. Acesso em: 12 nov. 2024.
    • APA

      Dussan, M. P., Franco Filho, A. de P., & Santos, R. S. dos. (2023). Spacelike minimal surfaces which are graphs in R14. Journal of Mathematical Analysis and Applications, 519( artigo 126791), 1-23. doi:10.1016/j.jmaa.2022.126791
    • NLM

      Dussan MP, Franco Filho A de P, Santos RS dos. Spacelike minimal surfaces which are graphs in R14 [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 519( artigo 126791): 1-23.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126791
    • Vancouver

      Dussan MP, Franco Filho A de P, Santos RS dos. Spacelike minimal surfaces which are graphs in R14 [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 519( artigo 126791): 1-23.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126791
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS, POLINÔMIOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões et al. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 516, n. 1, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2022.126487. Acesso em: 12 nov. 2024.
    • APA

      Barbosa, V. S., Gregori, P., Peron, A. P., & Porcu, E. (2022). Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 516( 1), 1-26. doi:10.1016/j.jmaa.2022.126487
    • NLM

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
    • Vancouver

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 12 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 12 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 12 nov. 2024.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAUSEY, Ryan. M e GALEGO, Eloi Medina e SAMUEL, Christian. On injective tensor powers of ℓ1. Journal of Mathematical Analysis and Applications, v. 494, n. art. 124581, p. 1-4, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124581. Acesso em: 12 nov. 2024.
    • APA

      Causey, R. M., Galego, E. M., & Samuel, C. (2021). On injective tensor powers of ℓ1. Journal of Mathematical Analysis and Applications, 494( art. 124581), 1-4. doi:10.1016/j.jmaa.2020.124581
    • NLM

      Causey RM, Galego EM, Samuel C. On injective tensor powers of ℓ1 [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( art. 124581): 1-4.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124581
    • Vancouver

      Causey RM, Galego EM, Samuel C. On injective tensor powers of ℓ1 [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( art. 124581): 1-4.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124581
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES INTEGRAIS LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e SASTRE-GOMEZ, Silvia. Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124729. Acesso em: 12 nov. 2024.
    • APA

      Pereira, M. C., & Sastre-Gomez, S. (2021). Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, 495( 2), 1-21. doi:10.1016/j.jmaa.2020.124729
    • NLM

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
    • Vancouver

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Zhisu e SICILIANO, Gaetano. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case. Journal of Mathematical Analysis and Applications, v. 503, n. 2, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125326. Acesso em: 12 nov. 2024.
    • APA

      Liu, Z., & Siciliano, G. (2021). A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case. Journal of Mathematical Analysis and Applications, 503( 2), 1-22. doi:10.1016/j.jmaa.2021.125326
    • NLM

      Liu Z, Siciliano G. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 503( 2): 1-22.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125326
    • Vancouver

      Liu Z, Siciliano G. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 503( 2): 1-22.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125326
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES ELÍTICOS, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOUNIE, J. e PICON, Tiago Henrique. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, v. 494, n. 1, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124598. Acesso em: 12 nov. 2024.
    • APA

      Hounie, J., & Picon, T. H. (2021). Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, 494( 1). doi:10.1016/j.jmaa.2020.124598
    • NLM

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
    • Vancouver

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components. Journal of Mathematical Analysis and Applications, v. 504, n. 1, p. [28] , 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125393. Acesso em: 12 nov. 2024.
    • APA

      D'Abbicco, M., & Ebert, M. R. (2021). Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components. Journal of Mathematical Analysis and Applications, 504( 1), [28] . doi:10.1016/j.jmaa.2021.125393
    • NLM

      D'Abbicco M, Ebert MR. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 504( 1): [28] .[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125393
    • Vancouver

      D'Abbicco M, Ebert MR. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 504( 1): [28] .[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125393
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 12 nov. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS HIPERBÓLICOS, VALORES PRÓPRIOS, VARIEDADES MÍNIMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124759. Acesso em: 12 nov. 2024.
    • APA

      Bezerra, A. C., & Manfio, F. (2021). Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, 495( 2), 1-10. doi:10.1016/j.jmaa.2020.124759
    • NLM

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
    • Vancouver

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro e GONZALEZ, Rafael Borro e SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, v. 492, n. 2, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124467. Acesso em: 12 nov. 2024.
    • APA

      Dattori da Silva, P. L., Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Dattori da Silva PL, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, SEMIGRUPOS DE OPERADORES LINEARES, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo. Abstract impulsive differential equations without predefined time impulses. Journal of Mathematical Analysis and Applications, v. 491, n. 1, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124288. Acesso em: 12 nov. 2024.
    • APA

      Hernandez, E. (2020). Abstract impulsive differential equations without predefined time impulses. Journal of Mathematical Analysis and Applications, 491( 1). doi:10.1016/j.jmaa.2020.124288
    • NLM

      Hernandez E. Abstract impulsive differential equations without predefined time impulses [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 491( 1):[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124288
    • Vancouver

      Hernandez E. Abstract impulsive differential equations without predefined time impulses [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 491( 1):[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124288

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024