A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
AZEVEDO, Anderson Soares da Costa et al. On the multi-objective perspective of discrete topology optimization in fluid-structure interaction problems. Applied Mathematical Modeling, v. 127, p. 1-17, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.apm.2023.11.024. Acesso em: 11 nov. 2024.
APA
Azevedo, A. S. da C., Ranjbarzadeh, S., Gioria, R. dos S., Silva, E. C. N., & Sanches, R. P. (2024). On the multi-objective perspective of discrete topology optimization in fluid-structure interaction problems. Applied Mathematical Modeling, 127, 1-17. doi:10.1016/j.apm.2023.11.024
NLM
Azevedo AS da C, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. On the multi-objective perspective of discrete topology optimization in fluid-structure interaction problems [Internet]. Applied Mathematical Modeling. 2024 ; 127 1-17.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.apm.2023.11.024
Vancouver
Azevedo AS da C, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. On the multi-objective perspective of discrete topology optimization in fluid-structure interaction problems [Internet]. Applied Mathematical Modeling. 2024 ; 127 1-17.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.apm.2023.11.024
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SIQUEIRA, Lucas O. et al. Topology optimization for stationary fluid–structure interaction problems with turbulent flow via sequential integer linear programming and smooth explicit boundaries. Advances in Engineering Software, v. Fe 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.advengsoft.2024.103599. Acesso em: 11 nov. 2024.
APA
Siqueira, L. O., Cortez, R. L., Sivapuram, R., Ranjbarzadeh, S., Gioria, R. dos S., Silva, E. C. N., & Picelli, R. (2024). Topology optimization for stationary fluid–structure interaction problems with turbulent flow via sequential integer linear programming and smooth explicit boundaries. Advances in Engineering Software, Fe 2024, 1-20. doi:10.1016/j.advengsoft.2024.103599
NLM
Siqueira LO, Cortez RL, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Picelli R. Topology optimization for stationary fluid–structure interaction problems with turbulent flow via sequential integer linear programming and smooth explicit boundaries. [Internet]. Advances in Engineering Software. 2024 ; Fe 2024 1-20.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.advengsoft.2024.103599
Vancouver
Siqueira LO, Cortez RL, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Picelli R. Topology optimization for stationary fluid–structure interaction problems with turbulent flow via sequential integer linear programming and smooth explicit boundaries. [Internet]. Advances in Engineering Software. 2024 ; Fe 2024 1-20.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.advengsoft.2024.103599
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BARROS, Glycon Pena de Souza et al. Análise SWOT para produção de biobutanol como estratégia competitiva para uma possível alternativa aos combustíveis fósseis. 2023, Anais.. Rio de Janeiro: ABEPRO, 2023. Disponível em: https://doi.org/10.14488/enegep2023_tn_wpg_407_2003_46746. Acesso em: 11 nov. 2024.
APA
Barros, G. P. de S., Laurindo, F. J. B., Silva, E. C. N., & Meneghini, J. R. (2023). Análise SWOT para produção de biobutanol como estratégia competitiva para uma possível alternativa aos combustíveis fósseis. In ENEGEP 2023 - A contribuição da engenharia de produção para desenvolvimento sustentável das organizações: cadeias circulares, sustentabilidade e tecnologias. Rio de Janeiro: ABEPRO. doi:10.14488/enegep2023_tn_wpg_407_2003_46746
NLM
Barros GP de S, Laurindo FJB, Silva ECN, Meneghini JR. Análise SWOT para produção de biobutanol como estratégia competitiva para uma possível alternativa aos combustíveis fósseis [Internet]. ENEGEP 2023 - A contribuição da engenharia de produção para desenvolvimento sustentável das organizações: cadeias circulares, sustentabilidade e tecnologias. 2023 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.14488/enegep2023_tn_wpg_407_2003_46746
Vancouver
Barros GP de S, Laurindo FJB, Silva ECN, Meneghini JR. Análise SWOT para produção de biobutanol como estratégia competitiva para uma possível alternativa aos combustíveis fósseis [Internet]. ENEGEP 2023 - A contribuição da engenharia de produção para desenvolvimento sustentável das organizações: cadeias circulares, sustentabilidade e tecnologias. 2023 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.14488/enegep2023_tn_wpg_407_2003_46746
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOUZA, Eduardo Moscatelli de et al. Hybrid geometry trimming algorithm based on Integer Linear Programming for fluid flow topology optimization. Computers & Fluids, v. 244, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.compfluid.2022.105561. Acesso em: 11 nov. 2024.
APA
Souza, E. M. de, Sá, L. F. N. de, Ranjbarzadeh, S., Sanches, R. P., Gioria, R. dos S., & Silva, E. C. N. (2022). Hybrid geometry trimming algorithm based on Integer Linear Programming for fluid flow topology optimization. Computers & Fluids, 244. doi:10.1016/j.compfluid.2022.105561
NLM
Souza EM de, Sá LFN de, Ranjbarzadeh S, Sanches RP, Gioria R dos S, Silva ECN. Hybrid geometry trimming algorithm based on Integer Linear Programming for fluid flow topology optimization [Internet]. Computers & Fluids. 2022 ; 244[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.compfluid.2022.105561
Vancouver
Souza EM de, Sá LFN de, Ranjbarzadeh S, Sanches RP, Gioria R dos S, Silva ECN. Hybrid geometry trimming algorithm based on Integer Linear Programming for fluid flow topology optimization [Internet]. Computers & Fluids. 2022 ; 244[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.compfluid.2022.105561
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 11 nov. 2024.
APA
Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
NLM
Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
Vancouver
Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
RANJBARZADEH, Shahin et al. Topology optimization of structures subject to non-Newtonian fluid–structure interaction loads using integer linear programming. Finite Elements in Analysis and Design, v. 202, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.finel.2021.103690. Acesso em: 11 nov. 2024.
APA
Ranjbarzadeh, S., Picelli, R. R., Gioria, R. dos S., & Silva, E. C. N. (2022). Topology optimization of structures subject to non-Newtonian fluid–structure interaction loads using integer linear programming. Finite Elements in Analysis and Design, 202. doi:10.1016/j.finel.2021.103690
NLM
Ranjbarzadeh S, Picelli RR, Gioria R dos S, Silva ECN. Topology optimization of structures subject to non-Newtonian fluid–structure interaction loads using integer linear programming [Internet]. Finite Elements in Analysis and Design. 2022 ; 202[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.finel.2021.103690
Vancouver
Ranjbarzadeh S, Picelli RR, Gioria R dos S, Silva ECN. Topology optimization of structures subject to non-Newtonian fluid–structure interaction loads using integer linear programming [Internet]. Finite Elements in Analysis and Design. 2022 ; 202[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.finel.2021.103690
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SOUZA, Eduardo Moscatelli de et al. Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, v. 65, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03233-w. Acesso em: 11 nov. 2024.
APA
Souza, E. M. de, Alonso, D. H., Sá, L. F. N. de, Sanches, R. P., & Silva, E. C. N. (2022). Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, 65, 1-23. doi:10.1007/s00158-022-03233-w
NLM
Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
Vancouver
Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Topology optimization applied to the design of Tesla-type turbine devices. Applied Mathematical Modelling, v. 103, p. 764-791, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.apm.2021.11.007. Acesso em: 11 nov. 2024.
APA
Alonso, D. H., & Silva, E. C. N. (2022). Topology optimization applied to the design of Tesla-type turbine devices. Applied Mathematical Modelling, 103, 764-791. doi:10.1016/j.apm.2021.11.007
NLM
Alonso DH, Silva ECN. Topology optimization applied to the design of Tesla-type turbine devices [Internet]. Applied Mathematical Modelling. 2022 ; 103 764-791.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.apm.2021.11.007
Vancouver
Alonso DH, Silva ECN. Topology optimization applied to the design of Tesla-type turbine devices [Internet]. Applied Mathematical Modelling. 2022 ; 103 764-791.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.apm.2021.11.007
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OKUBO JUNIOR, Carlos Massaiti et al. A discrete adjoint approach based on finite differences applied to topology optimization of flow problems. Computer Methods in Applied Mechanics and Engineering, v. 389, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2021.114406. Acesso em: 11 nov. 2024.
APA
Okubo Junior, C. M., Sá, L. F. N. de, Kiyono, C. Y., & Silva, E. C. N. (2022). A discrete adjoint approach based on finite differences applied to topology optimization of flow problems. Computer Methods in Applied Mechanics and Engineering, 389, 1-21. doi:10.1016/j.cma.2021.114406
NLM
Okubo Junior CM, Sá LFN de, Kiyono CY, Silva ECN. A discrete adjoint approach based on finite differences applied to topology optimization of flow problems [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 389 1-21.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2021.114406
Vancouver
Okubo Junior CM, Sá LFN de, Kiyono CY, Silva ECN. A discrete adjoint approach based on finite differences applied to topology optimization of flow problems [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 389 1-21.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2021.114406
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SANCHES, Renato Picelli et al. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, v. 65, n. 34, p. 1-34, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03118-4. Acesso em: 11 nov. 2024.
APA
Sanches, R. P., Souza, E. M. de, Yamabe, P. V. M., Alonso, D. H., Ranjbarzadeh, S., Gioria, R. dos S., et al. (2022). Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, 65( 34), 1-34. doi:10.1007/s00158-021-03118-4
NLM
Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
Vancouver
Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
EMMENDOERFER JUNIOR, Hélio et al. A level set-based optimized design of multi-material compliant mechanisms considering stress constraints. Computer Methods in Applied Mechanics and Engineering, v. 391, p. 1-38, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2021.114556. Acesso em: 11 nov. 2024.
APA
Emmendoerfer Junior, H., Maute, K., Fancello, E. A., & Silva, E. C. N. (2022). A level set-based optimized design of multi-material compliant mechanisms considering stress constraints. Computer Methods in Applied Mechanics and Engineering, 391, 1-38. doi:10.1016/j.cma.2021.114556
NLM
Emmendoerfer Junior H, Maute K, Fancello EA, Silva ECN. A level set-based optimized design of multi-material compliant mechanisms considering stress constraints [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 391 1-38.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2021.114556
Vancouver
Emmendoerfer Junior H, Maute K, Fancello EA, Silva ECN. A level set-based optimized design of multi-material compliant mechanisms considering stress constraints [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 391 1-38.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2021.114556
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, v. 65, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03251-8. Acesso em: 11 nov. 2024.
APA
Alonso, D. H., & Silva, E. C. N. (2022). Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, 65, 1-25. doi:10.1007/s00158-022-03251-8
NLM
Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
Vancouver
Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SILVA, Kamilla Emily Santos et al. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, v. 65, n. 337, p. 18 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03442-3. Acesso em: 11 nov. 2024.
APA
Silva, K. E. S., Sivapuram, R., Ranjbarzadeh, S., Gioria, R. dos S., Silva, E. C. N., & Sanches, R. P. (2022). Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, 65( 337), 18 2022. doi:10.1007/s00158-022-03442-3
NLM
Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
Vancouver
Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALONSO, Diego Hayashi et al. Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, p. 65-82, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03106-8. Acesso em: 11 nov. 2024.
APA
Alonso, D. H., Romero Saenz, J. S., Sanches, R. P., & Silva, E. C. N. (2022). Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, 65-82. doi:10.1007/s00158-021-03106-8
NLM
Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
Vancouver
Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SÁ, Luís Fernando Nogueira de et al. Topology optimization of turbulent rotating flows using Spalart–Allmaras model. Computer Methods in Applied Mechanics and Engineering, v. 385, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2020.113551. Acesso em: 11 nov. 2024.
APA
Sá, L. F. N. de, Yamabe, P. V. M., Carmo, B. S., & Silva, E. C. N. (2021). Topology optimization of turbulent rotating flows using Spalart–Allmaras model. Computer Methods in Applied Mechanics and Engineering, 385, 1-19. doi:10.1016/j.cma.2020.113551
NLM
Sá LFN de, Yamabe PVM, Carmo BS, Silva ECN. Topology optimization of turbulent rotating flows using Spalart–Allmaras model [Internet]. Computer Methods in Applied Mechanics and Engineering. 2021 ; 385 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2020.113551
Vancouver
Sá LFN de, Yamabe PVM, Carmo BS, Silva ECN. Topology optimization of turbulent rotating flows using Spalart–Allmaras model [Internet]. Computer Methods in Applied Mechanics and Engineering. 2021 ; 385 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2020.113551
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 11 nov. 2024.
APA
Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
NLM
Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
Vancouver
Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OKUBO JUNIOR, Carlos Massaiti et al. Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach. Computers & Mathematics with Applications, v. 96, p. 16-30, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.camwa.2021.05.006. Acesso em: 11 nov. 2024.
APA
Okubo Junior, C. M., Kiyono, C. Y., Sá, L. A. N. de, & Silva, E. C. N. (2021). Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach. Computers & Mathematics with Applications, 96, 16-30. doi:10.1016/j.camwa.2021.05.006
NLM
Okubo Junior CM, Kiyono CY, Sá LAN de, Silva ECN. Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach [Internet]. Computers & Mathematics with Applications. 2021 ; 96 16-30.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.camwa.2021.05.006
Vancouver
Okubo Junior CM, Kiyono CY, Sá LAN de, Silva ECN. Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach [Internet]. Computers & Mathematics with Applications. 2021 ; 96 16-30.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.camwa.2021.05.006
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BERNUCCI, Liedi Légi Bariani et al. Poli-USP e Marinha celebram 65 anos de parceria. [Depoimento]. PoliInforma Semanal -Informativo da Escola Politécnica da USP. Trajetórias Politécnicas. São Paulo: Escola Politécnica, Universidade de São Paulo. Disponível em: https://repositorio.usp.br/directbitstream/d20ddfe5-ee9d-4916-abfd-e3ced5fadd88/Nishimoto-2020-Poli-USP%20e%20Marinha%20celebram%2065%20anos%20de%20parceria%20%E2%80%93%20ESCOLA%20POLIT%C3%89CNICA.pdf. Acesso em: 11 nov. 2024. , 2021
APA
Bernucci, L. L. B., Giudici, R., González Lima, R., Silva, E. C. N., Morishita, H. M., Nishimoto, K., et al. (2021). Poli-USP e Marinha celebram 65 anos de parceria. [Depoimento]. PoliInforma Semanal -Informativo da Escola Politécnica da USP. Trajetórias Politécnicas. São Paulo: Escola Politécnica, Universidade de São Paulo. Recuperado de https://repositorio.usp.br/directbitstream/d20ddfe5-ee9d-4916-abfd-e3ced5fadd88/Nishimoto-2020-Poli-USP%20e%20Marinha%20celebram%2065%20anos%20de%20parceria%20%E2%80%93%20ESCOLA%20POLIT%C3%89CNICA.pdf
NLM
Bernucci LLB, Giudici R, González Lima R, Silva ECN, Morishita HM, Nishimoto K, Colmenero PC, Alves GD, Antoun Netto F, Silva MXV da, Rocha PH da, Agopyan V. Poli-USP e Marinha celebram 65 anos de parceria. [Depoimento] [Internet]. PoliInforma Semanal -Informativo da Escola Politécnica da USP. Trajetórias Politécnicas. 2021 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/d20ddfe5-ee9d-4916-abfd-e3ced5fadd88/Nishimoto-2020-Poli-USP%20e%20Marinha%20celebram%2065%20anos%20de%20parceria%20%E2%80%93%20ESCOLA%20POLIT%C3%89CNICA.pdf
Vancouver
Bernucci LLB, Giudici R, González Lima R, Silva ECN, Morishita HM, Nishimoto K, Colmenero PC, Alves GD, Antoun Netto F, Silva MXV da, Rocha PH da, Agopyan V. Poli-USP e Marinha celebram 65 anos de parceria. [Depoimento] [Internet]. PoliInforma Semanal -Informativo da Escola Politécnica da USP. Trajetórias Politécnicas. 2021 ;[citado 2024 nov. 11 ] Available from: https://repositorio.usp.br/directbitstream/d20ddfe5-ee9d-4916-abfd-e3ced5fadd88/Nishimoto-2020-Poli-USP%20e%20Marinha%20celebram%2065%20anos%20de%20parceria%20%E2%80%93%20ESCOLA%20POLIT%C3%89CNICA.pdf
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALONSO, Diego Hayashi e GARCIA RODRIGUEZ, Luis Fernando e SILVA, Emílio Carlos Nelli. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, v. 64, p. 4409–4440, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03061-4. Acesso em: 11 nov. 2024.
APA
Alonso, D. H., Garcia Rodriguez, L. F., & Silva, E. C. N. (2021). Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, 64, 4409–4440. doi:10.1007/s00158-021-03061-4
NLM
Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
Vancouver
Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GONÇALVES, Juliano Fagundes e SILVA, Emílio Carlos Nelli. An adaptive material interpolation for the reconstruction of p-wave velocity models with sharp interfaces using the topology optimization method. Journal of Theoretical and Computational Acoustics, p. 1-23, 2021Tradução . . Disponível em: https://doi.org/10.1142/S259172852150016X. Acesso em: 11 nov. 2024.
APA
Gonçalves, J. F., & Silva, E. C. N. (2021). An adaptive material interpolation for the reconstruction of p-wave velocity models with sharp interfaces using the topology optimization method. Journal of Theoretical and Computational Acoustics, 1-23. doi:10.1142/S259172852150016X
NLM
Gonçalves JF, Silva ECN. An adaptive material interpolation for the reconstruction of p-wave velocity models with sharp interfaces using the topology optimization method [Internet]. Journal of Theoretical and Computational Acoustics. 2021 ; 1-23.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S259172852150016X
Vancouver
Gonçalves JF, Silva ECN. An adaptive material interpolation for the reconstruction of p-wave velocity models with sharp interfaces using the topology optimization method [Internet]. Journal of Theoretical and Computational Acoustics. 2021 ; 1-23.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S259172852150016X