Source: Mathematische Zeitschrift. Unidade: ICMC
Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS
ABNT
ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 10 nov. 2024.APA
Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1NLM
Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00209-021-02925-1Vancouver
Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00209-021-02925-1