Filtros : "Manfio, Fernando" Limpar

Filtros



Limitar por data


  • Unidade: ICMC

    Assuntos: SUBVARIEDADES, CURVATURA MÉDIA CONSTANTE, ESPAÇOS DE LORENTZ

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLAMOCA, Milagros Anculli. Biconservative submanifolds in product of space forms. 2024. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20082024-163510/. Acesso em: 18 nov. 2024.
    • APA

      Llamoca, M. A. (2024). Biconservative submanifolds in product of space forms (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20082024-163510/
    • NLM

      Llamoca MA. Biconservative submanifolds in product of space forms [Internet]. 2024 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20082024-163510/
    • Vancouver

      Llamoca MA. Biconservative submanifolds in product of space forms [Internet]. 2024 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20082024-163510/
  • Unidade: ICMC

    Assuntos: CURVATURA MÉDIA CONSTANTE, SUPERFÍCIES MÍNIMAS, ESPAÇOS HOMOGÊNEOS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBIERI, Aires Eduardo Menani. Superfícies completas de curvatura média constante em espaços homogêneos. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-21032024-134753/. Acesso em: 18 nov. 2024.
    • APA

      Barbieri, A. E. M. (2024). Superfícies completas de curvatura média constante em espaços homogêneos (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-21032024-134753/
    • NLM

      Barbieri AEM. Superfícies completas de curvatura média constante em espaços homogêneos [Internet]. 2024 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-21032024-134753/
    • Vancouver

      Barbieri AEM. Superfícies completas de curvatura média constante em espaços homogêneos [Internet]. 2024 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-21032024-134753/
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, v. 537, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128316. Acesso em: 18 nov. 2024.
    • APA

      Bezerra, A. C., & Manfio, F. (2024). Umbilicity of constant mean curvature hypersurfaces into space forms. Journal of Mathematical Analysis and Applications, 537, 1-13. doi:10.1016/j.jmaa.2024.128316
    • NLM

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
    • Vancouver

      Bezerra AC, Manfio F. Umbilicity of constant mean curvature hypersurfaces into space forms [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 537 1-13.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128316
  • Unidade: ICMC

    Assuntos: SUBVARIEDADES, GEOMETRIA DAS DIFERENÇAS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Estela. Subvariedades com fibrado normal flat em espaços produto. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10042023-163740/. Acesso em: 18 nov. 2024.
    • APA

      Garcia, E. (2023). Subvariedades com fibrado normal flat em espaços produto (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10042023-163740/
    • NLM

      Garcia E. Subvariedades com fibrado normal flat em espaços produto [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10042023-163740/
    • Vancouver

      Garcia E. Subvariedades com fibrado normal flat em espaços produto [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10042023-163740/
  • Unidade: ICMC

    Assuntos: SUBVARIEDADES, CURVATURA MÉDIA CONSTANTE, ESPAÇOS DE CURVATURA CONSTANTE

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Verônica Santana. Algumas subvariedades em espaços produto warped. 2023. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092023-171738/. Acesso em: 18 nov. 2024.
    • APA

      Reis, V. S. (2023). Algumas subvariedades em espaços produto warped (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092023-171738/
    • NLM

      Reis VS. Algumas subvariedades em espaços produto warped [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092023-171738/
    • Vancouver

      Reis VS. Algumas subvariedades em espaços produto warped [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-12092023-171738/
  • Unidade: ICMC

    Assunto: GEOMETRIA DAS DIFERENÇAS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUYO, Leonel Renzo Ccama. Hipersuperfícies completas e mergulhadas em espaços produto. 2023. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06042023-085257/. Acesso em: 18 nov. 2024.
    • APA

      Cuyo, L. R. C. (2023). Hipersuperfícies completas e mergulhadas em espaços produto (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06042023-085257/
    • NLM

      Cuyo LRC. Hipersuperfícies completas e mergulhadas em espaços produto [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06042023-085257/
    • Vancouver

      Cuyo LRC. Hipersuperfícies completas e mergulhadas em espaços produto [Internet]. 2023 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-06042023-085257/
  • Fonte: Annali di Matematica Pura ed Applicata. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Ronaldo Freire de e MANFIO, Fernando e SANTOS, João Paulo dos. Hypersurfaces of constant higher‑order mean curvature in M × ℝ. Annali di Matematica Pura ed Applicata, v. 201, n. 6, p. 2979-3028, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10231-022-01229-3. Acesso em: 18 nov. 2024.
    • APA

      Lima, R. F. de, Manfio, F., & Santos, J. P. dos. (2022). Hypersurfaces of constant higher‑order mean curvature in M × ℝ. Annali di Matematica Pura ed Applicata, 201( 6), 2979-3028. doi:10.1007/s10231-022-01229-3
    • NLM

      Lima RF de, Manfio F, Santos JP dos. Hypersurfaces of constant higher‑order mean curvature in M × ℝ [Internet]. Annali di Matematica Pura ed Applicata. 2022 ; 201( 6): 2979-3028.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10231-022-01229-3
    • Vancouver

      Lima RF de, Manfio F, Santos JP dos. Hypersurfaces of constant higher‑order mean curvature in M × ℝ [Internet]. Annali di Matematica Pura ed Applicata. 2022 ; 201( 6): 2979-3028.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10231-022-01229-3
  • Fonte: Results in Mathematics. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES RIEMANNIANAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Ronaldo Freire de e MANFIO, Fernando e SANTOS, João Paulo dos. Einstein hypersurfaces of warped product spaces. Results in Mathematics, v. 77, n. 6, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-022-01758-6. Acesso em: 18 nov. 2024.
    • APA

      Lima, R. F. de, Manfio, F., & Santos, J. P. dos. (2022). Einstein hypersurfaces of warped product spaces. Results in Mathematics, 77( 6), 1-26. doi:10.1007/s00025-022-01758-6
    • NLM

      Lima RF de, Manfio F, Santos JP dos. Einstein hypersurfaces of warped product spaces [Internet]. Results in Mathematics. 2022 ; 77( 6): 1-26.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00025-022-01758-6
    • Vancouver

      Lima RF de, Manfio F, Santos JP dos. Einstein hypersurfaces of warped product spaces [Internet]. Results in Mathematics. 2022 ; 77( 6): 1-26.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00025-022-01758-6
  • Fonte: Caderno de resumos. Nome do evento: Simpósio de Matemática para a Graduação - SIM. Unidade: ICMC

    Assuntos: COHOMOLOGIA, VARIEDADES DIFERENCIÁVEIS

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABALLERO, Nícolas Roberto Ribeiro. Cohomologia de De Rham e aplicações. 2022, Anais.. São Carlos: ICMC-USP, 2022. Disponível em: https://sites.google.com/usp.br/sim2022/pagina-inicial. Acesso em: 18 nov. 2024.
    • APA

      Caballero, N. R. R. (2022). Cohomologia de De Rham e aplicações. In Caderno de resumos. São Carlos: ICMC-USP. Recuperado de https://sites.google.com/usp.br/sim2022/pagina-inicial
    • NLM

      Caballero NRR. Cohomologia de De Rham e aplicações [Internet]. Caderno de resumos. 2022 ;[citado 2024 nov. 18 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
    • Vancouver

      Caballero NRR. Cohomologia de De Rham e aplicações [Internet]. Caderno de resumos. 2022 ;[citado 2024 nov. 18 ] Available from: https://sites.google.com/usp.br/sim2022/pagina-inicial
  • Fonte: Annals of Global Analysis and Geometry. Unidade: ICMC

    Assuntos: GEOMETRIA GLOBAL, EQUAÇÕES DIFERENCIAIS PARCIAIS, SUBVARIEDADES, VALORES PRÓPRIOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e ROTH, Julien e UPADHYAY, Abhitosh. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, v. 62, n. 3, p. 489-505, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10455-022-09862-0. Acesso em: 18 nov. 2024.
    • APA

      Manfio, F., Roth, J., & Upadhyay, A. (2022). Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, 62( 3), 489-505. doi:10.1007/s10455-022-09862-0
    • NLM

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
    • Vancouver

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
  • Fonte: Annals of Global Analysis and Geometry. Unidades: ICMC, IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANEVARI, Samuel et al. Complete submanifolds with relative nullity in space forms. Annals of Global Analysis and Geometry, v. 59, n. 1, p. 81-92, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10455-020-09742-5. Acesso em: 18 nov. 2024.
    • APA

      Canevari, S., Freitas, G. M. de, Guimarães, F., Manfio, F., & Santos, J. P. dos. (2021). Complete submanifolds with relative nullity in space forms. Annals of Global Analysis and Geometry, 59( 1), 81-92. doi:10.1007/s10455-020-09742-5
    • NLM

      Canevari S, Freitas GM de, Guimarães F, Manfio F, Santos JP dos. Complete submanifolds with relative nullity in space forms [Internet]. Annals of Global Analysis and Geometry. 2021 ; 59( 1): 81-92.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10455-020-09742-5
    • Vancouver

      Canevari S, Freitas GM de, Guimarães F, Manfio F, Santos JP dos. Complete submanifolds with relative nullity in space forms [Internet]. Annals of Global Analysis and Geometry. 2021 ; 59( 1): 81-92.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10455-020-09742-5
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ESPAÇOS HIPERBÓLICOS, VALORES PRÓPRIOS, VARIEDADES MÍNIMAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124759. Acesso em: 18 nov. 2024.
    • APA

      Bezerra, A. C., & Manfio, F. (2021). Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, 495( 2), 1-10. doi:10.1016/j.jmaa.2020.124759
    • NLM

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
    • Vancouver

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
  • Fonte: Annali di Matematica Pura ed Applicata. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e TOJEIRO, Ruy e VEKEN, Joeri Van der. Geometry of submanifolds with respect to ambient vector fields. Annali di Matematica Pura ed Applicata, v. 199, n. 6, p. 2197-2225, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10231-020-00964-9. Acesso em: 18 nov. 2024.
    • APA

      Manfio, F., Tojeiro, R., & Veken, J. V. der. (2020). Geometry of submanifolds with respect to ambient vector fields. Annali di Matematica Pura ed Applicata, 199( 6), 2197-2225. doi:10.1007/s10231-020-00964-9
    • NLM

      Manfio F, Tojeiro R, Veken JV der. Geometry of submanifolds with respect to ambient vector fields [Internet]. Annali di Matematica Pura ed Applicata. 2020 ; 199( 6): 2197-2225.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10231-020-00964-9
    • Vancouver

      Manfio F, Tojeiro R, Veken JV der. Geometry of submanifolds with respect to ambient vector fields [Internet]. Annali di Matematica Pura ed Applicata. 2020 ; 199( 6): 2197-2225.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10231-020-00964-9
  • Unidade: ICMC

    Assunto: SUPERFÍCIES MÍNIMAS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESPINOZA, Mario Alexis Lamas. Superfícies mínimas e a conjectura de Lawson. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20012021-124450/. Acesso em: 18 nov. 2024.
    • APA

      Espinoza, M. A. L. (2020). Superfícies mínimas e a conjectura de Lawson (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20012021-124450/
    • NLM

      Espinoza MAL. Superfícies mínimas e a conjectura de Lawson [Internet]. 2020 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20012021-124450/
    • Vancouver

      Espinoza MAL. Superfícies mínimas e a conjectura de Lawson [Internet]. 2020 ;[citado 2024 nov. 18 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-20012021-124450/
  • Fonte: Mathematische Nachrichten. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA, GEOMETRIA RIEMANNIANA, IMERSÃO (TOPOLOGIA)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e SANTOS, João Paulo dos. Helicoidal flat surfaces in the 3-sphere. Mathematische Nachrichten, v. 292, n. Ja 2019, p. 127-136, 2019Tradução . . Disponível em: https://doi.org/10.1002/mana.201700254. Acesso em: 18 nov. 2024.
    • APA

      Manfio, F., & Santos, J. P. dos. (2019). Helicoidal flat surfaces in the 3-sphere. Mathematische Nachrichten, 292( Ja 2019), 127-136. doi:10.1002/mana.201700254
    • NLM

      Manfio F, Santos JP dos. Helicoidal flat surfaces in the 3-sphere [Internet]. Mathematische Nachrichten. 2019 ; 292( Ja 2019): 127-136.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1002/mana.201700254
    • Vancouver

      Manfio F, Santos JP dos. Helicoidal flat surfaces in the 3-sphere [Internet]. Mathematische Nachrichten. 2019 ; 292( Ja 2019): 127-136.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1002/mana.201700254
  • Fonte: Journal of Geometric Analysis. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES MÍNIMAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e TURGAY, N. C e UPADHYAY, Abhitosh. Biconservative submanifolds in 'S POT. N' x R and 'H POT. N' x R. Journal of Geometric Analysis, v. 29, n. Ja 2019, p. 283-298, 2019Tradução . . Disponível em: https://doi.org/10.1007/s12220-018-9990-9. Acesso em: 18 nov. 2024.
    • APA

      Manfio, F., Turgay, N. C., & Upadhyay, A. (2019). Biconservative submanifolds in 'S POT. N' x R and 'H POT. N' x R. Journal of Geometric Analysis, 29( Ja 2019), 283-298. doi:10.1007/s12220-018-9990-9
    • NLM

      Manfio F, Turgay NC, Upadhyay A. Biconservative submanifolds in 'S POT. N' x R and 'H POT. N' x R [Internet]. Journal of Geometric Analysis. 2019 ; 29( Ja 2019): 283-298.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s12220-018-9990-9
    • Vancouver

      Manfio F, Turgay NC, Upadhyay A. Biconservative submanifolds in 'S POT. N' x R and 'H POT. N' x R [Internet]. Journal of Geometric Analysis. 2019 ; 29( Ja 2019): 283-298.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s12220-018-9990-9
  • Fonte: Proceedings of the American Mathematical Society. Unidade: ICMC

    Assuntos: TEORIA ESPECTRAL, PROBLEMAS DE AUTOVALORES, GEOMETRIA GLOBAL, GEOMETRIA RIEMANNIANA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVALCANTE, Marcos P e MANFIO, Fernando. On the fundamental tone of immersions and submersions. Proceedings of the American Mathematical Society, v. 146, n. 7, p. 2963-2971, 2018Tradução . . Disponível em: https://doi.org/10.1090/proc/13969. Acesso em: 18 nov. 2024.
    • APA

      Cavalcante, M. P., & Manfio, F. (2018). On the fundamental tone of immersions and submersions. Proceedings of the American Mathematical Society, 146( 7), 2963-2971. doi:10.1090/proc/13969
    • NLM

      Cavalcante MP, Manfio F. On the fundamental tone of immersions and submersions [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 7): 2963-2971.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/proc/13969
    • Vancouver

      Cavalcante MP, Manfio F. On the fundamental tone of immersions and submersions [Internet]. Proceedings of the American Mathematical Society. 2018 ; 146( 7): 2963-2971.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1090/proc/13969
  • Unidade: ICMC

    Assuntos: SUBVARIEDADES, ISOMETRIA, VARIEDADES RIEMANNIANAS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Cleidinaldo Aguiar. Subvariedades de codimensão 2 em formas espaciais. 2018. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09012019-084134/. Acesso em: 18 nov. 2024.
    • APA

      Souza, C. A. (2018). Subvariedades de codimensão 2 em formas espaciais (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09012019-084134/
    • NLM

      Souza CA. Subvariedades de codimensão 2 em formas espaciais [Internet]. 2018 ;[citado 2024 nov. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09012019-084134/
    • Vancouver

      Souza CA. Subvariedades de codimensão 2 em formas espaciais [Internet]. 2018 ;[citado 2024 nov. 18 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09012019-084134/
  • Fonte: Annali di Matematica Pura ed Applicata. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANEVARI, Samuel e FREITAS, Guilherme Machado de e MANFIO, Fernando. Submanifolds with nonpositive extrinsic curvature. Annali di Matematica Pura ed Applicata, v. 196, n. 2, p. 407-426, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10231-016-0578-3. Acesso em: 18 nov. 2024.
    • APA

      Canevari, S., Freitas, G. M. de, & Manfio, F. (2017). Submanifolds with nonpositive extrinsic curvature. Annali di Matematica Pura ed Applicata, 196( 2), 407-426. doi:10.1007/s10231-016-0578-3
    • NLM

      Canevari S, Freitas GM de, Manfio F. Submanifolds with nonpositive extrinsic curvature [Internet]. Annali di Matematica Pura ed Applicata. 2017 ; 196( 2): 407-426.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10231-016-0578-3
    • Vancouver

      Canevari S, Freitas GM de, Manfio F. Submanifolds with nonpositive extrinsic curvature [Internet]. Annali di Matematica Pura ed Applicata. 2017 ; 196( 2): 407-426.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10231-016-0578-3
  • Fonte: Abstract. Nome do evento: International Workshop on Theory of Submanifolds - IWTS. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL CLÁSSICA, GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA, GEOMETRIA GLOBAL

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANEVARI, Samuel e FREITAS, Guilherme e MANFIO, Fernando. Submanifolds with nonpositive extrinsic curvature. 2016, Anais.. Istanbul: ITU, 2016. Disponível em: https://iwts2016.files.wordpress.com/2016/08/abstractbookiwts2016.pdf. Acesso em: 18 nov. 2024.
    • APA

      Canevari, S., Freitas, G., & Manfio, F. (2016). Submanifolds with nonpositive extrinsic curvature. In Abstract. Istanbul: ITU. Recuperado de https://iwts2016.files.wordpress.com/2016/08/abstractbookiwts2016.pdf
    • NLM

      Canevari S, Freitas G, Manfio F. Submanifolds with nonpositive extrinsic curvature [Internet]. Abstract. 2016 ;[citado 2024 nov. 18 ] Available from: https://iwts2016.files.wordpress.com/2016/08/abstractbookiwts2016.pdf
    • Vancouver

      Canevari S, Freitas G, Manfio F. Submanifolds with nonpositive extrinsic curvature [Internet]. Abstract. 2016 ;[citado 2024 nov. 18 ] Available from: https://iwts2016.files.wordpress.com/2016/08/abstractbookiwts2016.pdf

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024