Filtros : "Lanzilotta, Marcelo" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, v. 639, p. 120-149, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.09.044. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2024). Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, 639, 120-149. doi:10.1016/j.jalgebra.2023.09.044
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Strongly stratifying ideals, Morita contexts and Hochschild homology [Internet]. Journal of Algebra. 2024 ; 639 120-149.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.09.044
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Strongly stratifying ideals, Morita contexts and Hochschild homology [Internet]. Journal of Algebra. 2024 ; 639 120-149.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.09.044
  • Source: Journal of Algebra. Unidade: IME

    Subjects: DOENÇA CRÔNICA, DOENÇAS CARDIOVASCULARES, ANÁLISE DE VARIÂNCIA, REGRESSÃO LOGÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Han's conjecture for bounded extensions. Journal of Algebra, v. 598, p. 48-67, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2022.01.022. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2022). Han's conjecture for bounded extensions. Journal of Algebra, 598, 48-67. doi:10.1016/j.jalgebra.2022.01.022
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Han's conjecture for bounded extensions [Internet]. Journal of Algebra. 2022 ; 598 48-67.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.01.022
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Han's conjecture for bounded extensions [Internet]. Journal of Algebra. 2022 ; 598 48-67.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.01.022
  • Source: Bulletin of the London Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, v. 53, n. 6, p. 1636-1650, 2021Tradução . . Disponível em: https://doi.org/10.1112/blms.12516. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2021). Jacobi-Zariski long nearly exact sequences for associative algebras. Bulletin of the London Mathematical Society, 53( 6), 1636-1650. doi:10.1112/blms.12516
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1112/blms.12516
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Jacobi-Zariski long nearly exact sequences for associative algebras [Internet]. Bulletin of the London Mathematical Society. 2021 ; 53( 6): 1636-1650.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1112/blms.12516
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, TEORIA DAS CATEGORIAS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 dez. 24 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 dez. 24 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, v. 148, n. 6, p. 2421-2432, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14936. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, 148( 6), 2421-2432. doi:10.1090/proc/14936
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1090/proc/14936
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1090/proc/14936
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 dez. 24 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2024 dez. 24 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Source: Journal of Noncommutative Geometry. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Hochschild cohomology of algebras arising from categories and from bounded quivers. Journal of Noncommutative Geometry, v. 13, n. 3, p. 1011-1053, 2019Tradução . . Disponível em: https://doi.org/10.4171/JNCG/344. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Solotar, A., Marcos, E. do N., & Lanzilotta, M. (2019). Hochschild cohomology of algebras arising from categories and from bounded quivers. Journal of Noncommutative Geometry, 13( 3), 1011-1053. doi:10.4171/JNCG/344
    • NLM

      Cibils C, Solotar A, Marcos E do N, Lanzilotta M. Hochschild cohomology of algebras arising from categories and from bounded quivers [Internet]. Journal of Noncommutative Geometry. 2019 ; 13( 3): 1011-1053.[citado 2024 dez. 24 ] Available from: https://doi.org/10.4171/JNCG/344
    • Vancouver

      Cibils C, Solotar A, Marcos E do N, Lanzilotta M. Hochschild cohomology of algebras arising from categories and from bounded quivers [Internet]. Journal of Noncommutative Geometry. 2019 ; 13( 3): 1011-1053.[citado 2024 dez. 24 ] Available from: https://doi.org/10.4171/JNCG/344
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. The first Hochschild (co)homology when adding arrows to a bound quiver algebra. Journal of Algebra, v. 540, p. 63-77, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.08.029. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., Schroll, S., & Solotar, A. (2019). The first Hochschild (co)homology when adding arrows to a bound quiver algebra. Journal of Algebra, 540, 63-77. doi:10.1016/j.jalgebra.2019.08.029
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Schroll S, Solotar A. The first Hochschild (co)homology when adding arrows to a bound quiver algebra [Internet]. Journal of Algebra. 2019 ; 540 63-77.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.08.029
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Schroll S, Solotar A. The first Hochschild (co)homology when adding arrows to a bound quiver algebra [Internet]. Journal of Algebra. 2019 ; 540 63-77.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.08.029
  • Conference titles: Joint Meeting Brazil-France in Mathematics. Unidade: IME

    Subjects: K-TEORIA, HOMOLOGIA, ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’s conjecture. 2019, Anais.. Rio de Janeiro: Impa, 2019. Disponível em: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf. Acesso em: 24 dez. 2024.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2019). Split bounded extension algebras and Han’s conjecture. In . Rio de Janeiro: Impa. Recuperado de https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’s conjecture [Internet]. 2019 ;[citado 2024 dez. 24 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’s conjecture [Internet]. 2019 ;[citado 2024 dez. 24 ] Available from: https://impa.br/wp-content/uploads/2019/07/Book-of-abstracts.pdf
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS ANÉIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LANZILOTTA, Marcelo e MARCOS, Eduardo do Nascimento e MATA, Gustavo. Igusa-Todorov functions for radical square zero algebras. Journal of Algebra, v. 487, p. 357-385, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.06.001. Acesso em: 24 dez. 2024.
    • APA

      Lanzilotta, M., Marcos, E. do N., & Mata, G. (2017). Igusa-Todorov functions for radical square zero algebras. Journal of Algebra, 487, 357-385. doi:10.1016/j.jalgebra.2017.06.001
    • NLM

      Lanzilotta M, Marcos E do N, Mata G. Igusa-Todorov functions for radical square zero algebras [Internet]. Journal of Algebra. 2017 ; 487 357-385.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.06.001
    • Vancouver

      Lanzilotta M, Marcos E do N, Mata G. Igusa-Todorov functions for radical square zero algebras [Internet]. Journal of Algebra. 2017 ; 487 357-385.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.06.001
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LANZILOTTA, Marcelo et al. On the relative socle for stratifying systems. Communications in Algebra, v. 38, n. 5, p. 1677-1694, 2010Tradução . . Disponível em: https://doi.org/10.1080/00927870902973896. Acesso em: 24 dez. 2024.
    • APA

      Lanzilotta, M., Marcos, E. do N., Mendoza, O., & Sáenz, C. (2010). On the relative socle for stratifying systems. Communications in Algebra, 38( 5), 1677-1694. doi:10.1080/00927870902973896
    • NLM

      Lanzilotta M, Marcos E do N, Mendoza O, Sáenz C. On the relative socle for stratifying systems [Internet]. Communications in Algebra. 2010 ; 38( 5): 1677-1694.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1080/00927870902973896
    • Vancouver

      Lanzilotta M, Marcos E do N, Mendoza O, Sáenz C. On the relative socle for stratifying systems [Internet]. Communications in Algebra. 2010 ; 38( 5): 1677-1694.[citado 2024 dez. 24 ] Available from: https://doi.org/10.1080/00927870902973896

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024