Filtros : "ESPAÇOS DE SOBOLEV" "Suiça" Limpar

Filtros



Limitar por data


  • Fonte: Annals of Functional Analysis. Unidade: ICMC

    Assuntos: ESPAÇOS DE FRECHET, ESPAÇOS DE SOBOLEV, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis e SALGE, Luís Márcio. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces. Annals of Functional Analysis, v. 13, n. 4, p. 1-17, 2022Tradução . . Disponível em: https://doi.org/10.1007/s43034-022-00198-1. Acesso em: 05 nov. 2024.
    • APA

      Aragão-Costa, É. R., & Salge, L. M. (2022). Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces. Annals of Functional Analysis, 13( 4), 1-17. doi:10.1007/s43034-022-00198-1
    • NLM

      Aragão-Costa ÉR, Salge LM. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces [Internet]. Annals of Functional Analysis. 2022 ; 13( 4): 1-17.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s43034-022-00198-1
    • Vancouver

      Aragão-Costa ÉR, Salge LM. Spectrum of differential operators with elliptic adjoint on a scale of localized Sobolev spaces [Internet]. Annals of Functional Analysis. 2022 ; 13( 4): 1-17.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s43034-022-00198-1
  • Fonte: Revista Matemática Iberoamericana. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, ESPAÇOS DE SOBOLEV, ESPAÇOS DE ORLICZ

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson Abrantes e SOARES, Sérgio Henrique Monari. A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces. Revista Matemática Iberoamericana, v. 36, n. 6, p. 1687-1720, 2020Tradução . . Disponível em: https://doi.org/10.4171/rmi/1180. Acesso em: 05 nov. 2024.
    • APA

      Santos, J. A., & Soares, S. H. M. (2020). A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces. Revista Matemática Iberoamericana, 36( 6), 1687-1720. doi:10.4171/rmi/1180
    • NLM

      Santos JA, Soares SHM. A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Revista Matemática Iberoamericana. 2020 ; 36( 6): 1687-1720.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4171/rmi/1180
    • Vancouver

      Santos JA, Soares SHM. A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces [Internet]. Revista Matemática Iberoamericana. 2020 ; 36( 6): 1687-1720.[citado 2024 nov. 05 ] Available from: https://doi.org/10.4171/rmi/1180
  • Fonte: Milan Journal of Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, MÉTODOS VARIACIONAIS, SISTEMAS HAMILTONIANOS, ESPAÇOS DE SOBOLEV

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEUYACC, Yony Raúl Santaria e SOARES, Sérgio Henrique Monari. On a Hamiltonian system with critical exponential growth. Milan Journal of Mathematics, v. 87, n. Ju 2019, p. 105-140, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00032-019-00294-3. Acesso em: 05 nov. 2024.
    • APA

      Leuyacc, Y. R. S., & Soares, S. H. M. (2019). On a Hamiltonian system with critical exponential growth. Milan Journal of Mathematics, 87( Ju 2019), 105-140. doi:10.1007/s00032-019-00294-3
    • NLM

      Leuyacc YRS, Soares SHM. On a Hamiltonian system with critical exponential growth [Internet]. Milan Journal of Mathematics. 2019 ; 87( Ju 2019): 105-140.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00032-019-00294-3
    • Vancouver

      Leuyacc YRS, Soares SHM. On a Hamiltonian system with critical exponential growth [Internet]. Milan Journal of Mathematics. 2019 ; 87( Ju 2019): 105-140.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s00032-019-00294-3

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024