Filtros : "Experimental Brain Research" Limpar

Filtros



Limitar por data


  • Fonte: Experimental Brain Research. Unidade: EEFE

    Assuntos: EXERCÍCIOS CARDIO-RESPIRATÓRIOS, APRENDIZAGEM MOTORA, ACIDENTE VASCULAR CEREBRAL, MEMÓRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONUZZI, Giordano Márcio Gatinho et al. Moderate‑intensity cardiovascular exercise performed before motor practice attenuates offline implicit motor learning in stroke survivors but not age‑matched neurotypical adults. Experimental Brain Research, v. 241, p. 2019-2032, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00221-023-06659-w. Acesso em: 24 abr. 2024.
    • APA

      Bonuzzi, G. M. G., Bastos, F. H., Schweighofer, N., Wade, E., Winstein, C. J., & Torriani-Pasin, C. (2023). Moderate‑intensity cardiovascular exercise performed before motor practice attenuates offline implicit motor learning in stroke survivors but not age‑matched neurotypical adults. Experimental Brain Research, 241, 2019-2032. doi:10.1007/s00221-023-06659-w
    • NLM

      Bonuzzi GMG, Bastos FH, Schweighofer N, Wade E, Winstein CJ, Torriani-Pasin C. Moderate‑intensity cardiovascular exercise performed before motor practice attenuates offline implicit motor learning in stroke survivors but not age‑matched neurotypical adults [Internet]. Experimental Brain Research. 2023 ; 241 2019-2032.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-023-06659-w
    • Vancouver

      Bonuzzi GMG, Bastos FH, Schweighofer N, Wade E, Winstein CJ, Torriani-Pasin C. Moderate‑intensity cardiovascular exercise performed before motor practice attenuates offline implicit motor learning in stroke survivors but not age‑matched neurotypical adults [Internet]. Experimental Brain Research. 2023 ; 241 2019-2032.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-023-06659-w
  • Fonte: Experimental Brain Research. Unidade: EEFE

    Assuntos: OBESIDADE, HABILIDADES MOTORAS, APRENDIZAGEM PERCEPTOMOTORA, APRENDIZAGEM MOTORA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REFINETTI, Fernanda Mottin et al. Obesity impairs performing and learning a timing perception task regardless of the body position. Experimental Brain Research, v. 239, p. 351-361, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00221-020-06004-5. Acesso em: 24 abr. 2024.
    • APA

      Refinetti, F. M., Drews, R., Corrêa, U. C., & Bastos Flavio Henrique,. (2021). Obesity impairs performing and learning a timing perception task regardless of the body position. Experimental Brain Research, 239, 351-361. doi:10.1007/s00221-020-06004-5
    • NLM

      Refinetti FM, Drews R, Corrêa UC, Bastos Flavio Henrique. Obesity impairs performing and learning a timing perception task regardless of the body position [Internet]. Experimental Brain Research. 2021 ; 239 351-361.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-06004-5
    • Vancouver

      Refinetti FM, Drews R, Corrêa UC, Bastos Flavio Henrique. Obesity impairs performing and learning a timing perception task regardless of the body position [Internet]. Experimental Brain Research. 2021 ; 239 351-361.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-06004-5
  • Fonte: Experimental Brain Research. Unidades: EEFE, IP

    Assuntos: ADAPTAÇÃO, EQUILÍBRIO, MÚSCULOS, POSTURA, PERNA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RINALDIN, Carla Daniele Pacheco et al. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue. Experimental Brain Research, v. fe 2021, n. 2, p. 639-653, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00221-020-06003-6. Acesso em: 24 abr. 2024.
    • APA

      Rinaldin, C. D. P., Oliveira, J. A. de, Souza, C. R. de, Scheeren, E. M., Coelho, D. B., & Teixeira, L. A. (2021). Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue. Experimental Brain Research, fe 2021( 2), 639-653. doi:10.1007/s00221-020-06003-6
    • NLM

      Rinaldin CDP, Oliveira JA de, Souza CR de, Scheeren EM, Coelho DB, Teixeira LA. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue [Internet]. Experimental Brain Research. 2021 ; fe 2021( 2): 639-653.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-06003-6
    • Vancouver

      Rinaldin CDP, Oliveira JA de, Souza CR de, Scheeren EM, Coelho DB, Teixeira LA. Compensatory control between the legs in automatic postural responses to stance perturbations under single-leg fatigue [Internet]. Experimental Brain Research. 2021 ; fe 2021( 2): 639-653.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-06003-6
  • Fonte: Experimental Brain Research. Unidade: EEFE

    Assuntos: APRENDIZAGEM MOTORA, EQUILÍBRIO, LATERALIDADE, EQUILÍBRIO MUSCULOSQUELÉTICO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCORI, Alexandre Jehan et al. Asymmetric interlateral transfer of motor learning in unipedal dynamic balance. Experimental Brain Research, v. 238, n. 12, p. 2745-2751, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00221-020-05930-8. Acesso em: 24 abr. 2024.
    • APA

      Marcori, A. J., Teixeira, L. A., Mathias, K. R., Dascal, J. B., & Okazaki, V. H. A. (2020). Asymmetric interlateral transfer of motor learning in unipedal dynamic balance. Experimental Brain Research, 238( 12), 2745-2751. doi:10.1007/s00221-020-05930-8
    • NLM

      Marcori AJ, Teixeira LA, Mathias KR, Dascal JB, Okazaki VHA. Asymmetric interlateral transfer of motor learning in unipedal dynamic balance [Internet]. Experimental Brain Research. 2020 ; 238( 12): 2745-2751.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-05930-8
    • Vancouver

      Marcori AJ, Teixeira LA, Mathias KR, Dascal JB, Okazaki VHA. Asymmetric interlateral transfer of motor learning in unipedal dynamic balance [Internet]. Experimental Brain Research. 2020 ; 238( 12): 2745-2751.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-05930-8
  • Fonte: Experimental Brain Research. Unidade: FFCLRP

    Assuntos: ABUSO DE ÁLCOOL, TRANSTORNOS RELACIONADOS AO USO DE ÁLCOOL, ALCOOLISMO, ANSIEDADE, MODELOS ANIMAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SGOBBI, Renata Ferreira e SANTO, Manoel Jorge Nobre do Espírito. Differential effects of early exposure to alcohol on alcohol preference and blood alcohol levels in low-and high-anxious rats. Experimental Brain Research, v. 238, n. 12, p. 2753-2768, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00221-020-05932-6. Acesso em: 24 abr. 2024.
    • APA

      Sgobbi, R. F., & Santo, M. J. N. do E. (2020). Differential effects of early exposure to alcohol on alcohol preference and blood alcohol levels in low-and high-anxious rats. Experimental Brain Research, 238( 12), 2753-2768. doi:10.1007/s00221-020-05932-6
    • NLM

      Sgobbi RF, Santo MJN do E. Differential effects of early exposure to alcohol on alcohol preference and blood alcohol levels in low-and high-anxious rats [Internet]. Experimental Brain Research. 2020 ; 238( 12): 2753-2768.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-05932-6
    • Vancouver

      Sgobbi RF, Santo MJN do E. Differential effects of early exposure to alcohol on alcohol preference and blood alcohol levels in low-and high-anxious rats [Internet]. Experimental Brain Research. 2020 ; 238( 12): 2753-2768.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-020-05932-6
  • Fonte: Experimental Brain Research. Unidade: FFCLRP

    Assuntos: ESTIMULAÇÃO, PERCEPÇÃO, FREQUÊNCIA DO ESTÍMULO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASILIMAS DÍAZ, David Andrés e BUENO, José Lino Oliveira. Synchronising to a frequency while estimating time of vibro-tactile stimuli. Experimental Brain Research, v. 327, n. 5, p. 1257-1266, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00221-019-05504-3. Acesso em: 24 abr. 2024.
    • APA

      Casilimas Díaz, D. A., & Bueno, J. L. O. (2019). Synchronising to a frequency while estimating time of vibro-tactile stimuli. Experimental Brain Research, 327( 5), 1257-1266. doi:10.1007/s00221-019-05504-3
    • NLM

      Casilimas Díaz DA, Bueno JLO. Synchronising to a frequency while estimating time of vibro-tactile stimuli [Internet]. Experimental Brain Research. 2019 ; 327( 5): 1257-1266.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-019-05504-3
    • Vancouver

      Casilimas Díaz DA, Bueno JLO. Synchronising to a frequency while estimating time of vibro-tactile stimuli [Internet]. Experimental Brain Research. 2019 ; 327( 5): 1257-1266.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-019-05504-3
  • Fonte: Experimental Brain Research. Unidade: FMRP

    Assuntos: MORFOLOGIA, MORFOMETRIA, ANEMIA FERROPRIVA, ESTIMULAÇÃO TÁTIL, NERVO ÓPTICO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HORIQUINI-BARBOSA, Everton e LACHAT, João José. Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats. Experimental Brain Research, v. 234, n. 6, p. 1737-1746, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00221-016-4586-8. Acesso em: 24 abr. 2024.
    • APA

      Horiquini-Barbosa, E., & Lachat, J. J. (2016). Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats. Experimental Brain Research, 234( 6), 1737-1746. doi:10.1007/s00221-016-4586-8
    • NLM

      Horiquini-Barbosa E, Lachat JJ. Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats [Internet]. Experimental Brain Research. 2016 ; 234( 6): 1737-1746.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-016-4586-8
    • Vancouver

      Horiquini-Barbosa E, Lachat JJ. Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats [Internet]. Experimental Brain Research. 2016 ; 234( 6): 1737-1746.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-016-4586-8
  • Fonte: Experimental Brain Research. Unidade: FMRP

    Assuntos: ATIVIDADE MOTORA, CAMPO MAGNÉTICO, MODELOS ANIMAIS DE DOENÇAS, DOENÇAS NEURODEGENERATIVAS, NEURÔNIOS, AGENTES DOPAMINÉRGICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIORGETTO, Carolina et al. Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field. Experimental Brain Research, v. 233, n. 5, p. 1455-1462, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00221-015-4219-7. Acesso em: 24 abr. 2024.
    • APA

      Giorgetto, C., Silva, E. C. M., Kitabatake, T. T., Bertolino, G., & Araújo, J. E. de. (2015). Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field. Experimental Brain Research, 233( 5), 1455-1462. doi:10.1007/s00221-015-4219-7
    • NLM

      Giorgetto C, Silva ECM, Kitabatake TT, Bertolino G, Araújo JE de. Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field [Internet]. Experimental Brain Research. 2015 ; 233( 5): 1455-1462.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-015-4219-7
    • Vancouver

      Giorgetto C, Silva ECM, Kitabatake TT, Bertolino G, Araújo JE de. Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field [Internet]. Experimental Brain Research. 2015 ; 233( 5): 1455-1462.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-015-4219-7
  • Fonte: Experimental Brain Research. Unidade: IP

    Assunto: VISÃO

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Thiago L et al. Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex. Experimental Brain Research, v. 233, p. 1213-1223, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00221-015-4199-7. Acesso em: 24 abr. 2024.
    • APA

      Costa, T. L., Hamer, R., Nagy, B. V., Barboni, M. T. S., Gualtieri, M., Boggio, P. S., & Ventura, D. S. F. (2015). Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex. Experimental Brain Research, 233, 1213-1223. doi:10.1007/s00221-015-4199-7
    • NLM

      Costa TL, Hamer R, Nagy BV, Barboni MTS, Gualtieri M, Boggio PS, Ventura DSF. Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex [Internet]. Experimental Brain Research. 2015 ; 233 1213-1223.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-015-4199-7
    • Vancouver

      Costa TL, Hamer R, Nagy BV, Barboni MTS, Gualtieri M, Boggio PS, Ventura DSF. Transcranial direct current stimulation can selectively affect different processing channels in human visual cortex [Internet]. Experimental Brain Research. 2015 ; 233 1213-1223.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-015-4199-7
  • Fonte: Experimental Brain Research. Unidade: FM

    Assuntos: SENSAÇÃO (FISIOLOGIA), VESTÍBULO (ANATOMIA), VISÃO, IMAGEM POR RESSONÂNCIA MAGNÉTICA

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELLA-JUSTINA, Hellen M. et al. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Experimental Brain Research, v. 233, p. 237-252, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00221-014-4107-6. Acesso em: 24 abr. 2024.
    • APA

      Della-Justina, H. M., Gamba, H. R., Likasova, K., Nucci-da-Silva, M. P., Winkler, A. M., & Amaro Junior, E. (2015). Interaction of brain areas of visual and vestibular simultaneous activity with fMRI. Experimental Brain Research, 233, 237-252. doi:10.1007/s00221-014-4107-6
    • NLM

      Della-Justina HM, Gamba HR, Likasova K, Nucci-da-Silva MP, Winkler AM, Amaro Junior E. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI [Internet]. Experimental Brain Research. 2015 ; 233 237-252.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-014-4107-6
    • Vancouver

      Della-Justina HM, Gamba HR, Likasova K, Nucci-da-Silva MP, Winkler AM, Amaro Junior E. Interaction of brain areas of visual and vestibular simultaneous activity with fMRI [Internet]. Experimental Brain Research. 2015 ; 233 237-252.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-014-4107-6
  • Fonte: Experimental Brain Research. Unidades: EEFE, EACH, EP

    Assuntos: POSTURA (CONTROLE), EQUILÍBRIO, PERCEPÇÃO TÁTIL, SENTIDOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINELLI, Alessandra Rezende et al. Light touch modulates balance recovery following perturbation: from fast response to stance restabilization. Experimental Brain Research, v. 233, n. 5, p. 1399-1408, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00221-015-4214-z. Acesso em: 24 abr. 2024.
    • APA

      Martinelli, A. R., Coelho, D. B., Magalhães, F. H., Kohn, A. F., & Teixeira, L. A. (2015). Light touch modulates balance recovery following perturbation: from fast response to stance restabilization. Experimental Brain Research, 233( 5), 1399-1408. doi:10.1007/s00221-015-4214-z
    • NLM

      Martinelli AR, Coelho DB, Magalhães FH, Kohn AF, Teixeira LA. Light touch modulates balance recovery following perturbation: from fast response to stance restabilization [Internet]. Experimental Brain Research. 2015 ; 233( 5): 1399-1408.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-015-4214-z
    • Vancouver

      Martinelli AR, Coelho DB, Magalhães FH, Kohn AF, Teixeira LA. Light touch modulates balance recovery following perturbation: from fast response to stance restabilization [Internet]. Experimental Brain Research. 2015 ; 233( 5): 1399-1408.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-015-4214-z
  • Fonte: Experimental Brain Research. Unidade: EEFE

    Assuntos: LATERALIDADE, POSTURA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA JUNIOR, Osvaldo e COELHO, Daniel Boari e TEIXEIRA, Luis Augusto. Asymmetric balance control between legs for quiet but not for perturbed stance. Experimental Brain Research, v. 232, p. 3269-3276, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00221-014-4018-6. Acesso em: 24 abr. 2024.
    • APA

      Vieira Junior, O., Coelho, D. B., & Teixeira, L. A. (2014). Asymmetric balance control between legs for quiet but not for perturbed stance. Experimental Brain Research, 232, 3269-3276. doi:10.1007/s00221-014-4018-6
    • NLM

      Vieira Junior O, Coelho DB, Teixeira LA. Asymmetric balance control between legs for quiet but not for perturbed stance [Internet]. Experimental Brain Research. 2014 ; 232 3269-3276.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-014-4018-6
    • Vancouver

      Vieira Junior O, Coelho DB, Teixeira LA. Asymmetric balance control between legs for quiet but not for perturbed stance [Internet]. Experimental Brain Research. 2014 ; 232 3269-3276.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-014-4018-6
  • Fonte: Experimental Brain Research. Unidade: EACH

    Assuntos: POSTURA, VISÃO, MÚSCULOS, ANÁLISE DO MOVIMENTO HUMANO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DANNA‑DOS‑SANTOS, Alessander et al. The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach. Experimental Brain Research, v. no 2014, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00221-014-4145-0. Acesso em: 24 abr. 2024.
    • APA

      Danna‑Dos‑Santos, A., Degani, A. M., Boonstra, T. W., Mochizuki, L., Harney, A. M., Schmeckpeper, M. M., et al. (2014). The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach. Experimental Brain Research, no 2014. doi:10.1007/s00221-014-4145-0
    • NLM

      Danna‑Dos‑Santos A, Degani AM, Boonstra TW, Mochizuki L, Harney AM, Schmeckpeper MM, Tabor LC, Leonard CT. The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach [Internet]. Experimental Brain Research. 2014 ; no 2014[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-014-4145-0
    • Vancouver

      Danna‑Dos‑Santos A, Degani AM, Boonstra TW, Mochizuki L, Harney AM, Schmeckpeper MM, Tabor LC, Leonard CT. The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach [Internet]. Experimental Brain Research. 2014 ; no 2014[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-014-4145-0
  • Fonte: Experimental Brain Research. Unidade: EACH

    Assuntos: POSTURA, MÚSCULOS, ANÁLISE DO MOVIMENTO HUMANO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DANNA‑DOS‑SANTOS, Alessander et al. Multi‑muscle control during bipedal stance: an EMG–EMG analysis approach. Experimental Brain Research, v. 232, n. ja 2014, p. 75-87, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00221-013-3721-z. Acesso em: 24 abr. 2024.
    • APA

      Danna‑Dos‑Santos, A., Boonstra, T. W., Degani, A. M., Cardoso, V. S., Magalhaes, A. T., Mochizuki, L., & Leonard, C. T. (2014). Multi‑muscle control during bipedal stance: an EMG–EMG analysis approach. Experimental Brain Research, 232( ja 2014), 75-87. doi:10.1007/s00221-013-3721-z
    • NLM

      Danna‑Dos‑Santos A, Boonstra TW, Degani AM, Cardoso VS, Magalhaes AT, Mochizuki L, Leonard CT. Multi‑muscle control during bipedal stance: an EMG–EMG analysis approach [Internet]. Experimental Brain Research. 2014 ; 232( ja 2014): 75-87.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-013-3721-z
    • Vancouver

      Danna‑Dos‑Santos A, Boonstra TW, Degani AM, Cardoso VS, Magalhaes AT, Mochizuki L, Leonard CT. Multi‑muscle control during bipedal stance: an EMG–EMG analysis approach [Internet]. Experimental Brain Research. 2014 ; 232( ja 2014): 75-87.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-013-3721-z
  • Fonte: Experimental Brain Research. Unidade: ICB

    Assunto: FISIOLOGIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIGHI, Luana Lira e RIBEIRO-DO-VALLE, Luiz Eduardo. Which factors are important for crossmodal attentional effect?. Experimental Brain Research, v. 225, n. 4, p. 491-498, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00221-012-3389-9. Acesso em: 24 abr. 2024.
    • APA

      Righi, L. L., & Ribeiro-do-Valle, L. E. (2013). Which factors are important for crossmodal attentional effect? Experimental Brain Research, 225( 4), 491-498. doi:10.1007/s00221-012-3389-9
    • NLM

      Righi LL, Ribeiro-do-Valle LE. Which factors are important for crossmodal attentional effect? [Internet]. Experimental Brain Research. 2013 ; 225( 4): 491-498.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-012-3389-9
    • Vancouver

      Righi LL, Ribeiro-do-Valle LE. Which factors are important for crossmodal attentional effect? [Internet]. Experimental Brain Research. 2013 ; 225( 4): 491-498.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-012-3389-9
  • Fonte: Experimental Brain Research. Unidade: EACH

    Assuntos: POSTURA, SISTEMA NERVOSO CENTRAL, VIAS NEURAIS, RESSONÂNCIA MAGNÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAGALHÃES, Fernando Henrique e KOHN, André Fábio. Imperceptible electrical noise attenuates isometric plantar Xexion force Xuctuations with correlated reductions in postural sway. Experimental Brain Research, v. 217, n. 2, p. 175-186, 2012Tradução . . Disponível em: https://doi.org/10.1007/s00221-011-2983-6. Acesso em: 24 abr. 2024.
    • APA

      Magalhães, F. H., & Kohn, A. F. (2012). Imperceptible electrical noise attenuates isometric plantar Xexion force Xuctuations with correlated reductions in postural sway. Experimental Brain Research, 217( 2), 175-186. doi:10.1007/s00221-011-2983-6
    • NLM

      Magalhães FH, Kohn AF. Imperceptible electrical noise attenuates isometric plantar Xexion force Xuctuations with correlated reductions in postural sway [Internet]. Experimental Brain Research. 2012 ;217( 2): 175-186.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-011-2983-6
    • Vancouver

      Magalhães FH, Kohn AF. Imperceptible electrical noise attenuates isometric plantar Xexion force Xuctuations with correlated reductions in postural sway [Internet]. Experimental Brain Research. 2012 ;217( 2): 175-186.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-011-2983-6
  • Fonte: Experimental Brain Research. Unidade: EEFE

    Assuntos: MEMÓRIA, APRENDIZAGEM, PERCEPÇÃO VISUAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO NETO, Raimundo Machado de e TEIXEIRA, Luis Augusto. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing [?]. Experimental Brain Research, v. 211, n. 1, p. 109-117, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00221-011-2657-4. Acesso em: 24 abr. 2024.
    • APA

      Azevedo Neto, R. M. de, & Teixeira, L. A. (2011). Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing [?]. Experimental Brain Research, 211( 1), 109-117. doi:10.1007/s00221-011-2657-4
    • NLM

      Azevedo Neto RM de, Teixeira LA. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing [?] [Internet]. Experimental Brain Research. 2011 ; 211( 1): 109-117.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-011-2657-4
    • Vancouver

      Azevedo Neto RM de, Teixeira LA. Intercepting moving targets: does memory from practice in a specific condition of target displacement affect movement timing [?] [Internet]. Experimental Brain Research. 2011 ; 211( 1): 109-117.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-011-2657-4
  • Fonte: Experimental Brain Research. Unidade: EP

    Assunto: ENGENHARIA ELÉTRICA

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAGALHÃES, Fernando Henrique e KOHN, André Fábio. Vibratory noise to the fingertip enhances balance improvement associated with light touch. Experimental Brain Research, n. 209, p. 139-151, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00221-010-2529-3. Acesso em: 24 abr. 2024.
    • APA

      Magalhães, F. H., & Kohn, A. F. (2010). Vibratory noise to the fingertip enhances balance improvement associated with light touch. Experimental Brain Research, ( 209), 139-151. doi:10.1007/s00221-010-2529-3
    • NLM

      Magalhães FH, Kohn AF. Vibratory noise to the fingertip enhances balance improvement associated with light touch [Internet]. Experimental Brain Research. 2010 ;( 209): 139-151.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-010-2529-3
    • Vancouver

      Magalhães FH, Kohn AF. Vibratory noise to the fingertip enhances balance improvement associated with light touch [Internet]. Experimental Brain Research. 2010 ;( 209): 139-151.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-010-2529-3
  • Fonte: Experimental Brain Research. Unidade: EEFE

    Assuntos: CONTROLE MOTOR, CINEMÁTICA

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO NETO, Raymundo Machado de e TEIXEIRA, Luis Augusto. Control of interceptive actions is based on expectancy of time to target arrival. Experimental Brain Research, v. 1999, p. 135-143, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00221-009-1987-y. Acesso em: 24 abr. 2024.
    • APA

      Azevedo Neto, R. M. de, & Teixeira, L. A. (2009). Control of interceptive actions is based on expectancy of time to target arrival. Experimental Brain Research, 1999, 135-143. doi:10.1007/s00221-009-1987-y
    • NLM

      Azevedo Neto RM de, Teixeira LA. Control of interceptive actions is based on expectancy of time to target arrival [Internet]. Experimental Brain Research. 2009 ; 1999 135-143.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-009-1987-y
    • Vancouver

      Azevedo Neto RM de, Teixeira LA. Control of interceptive actions is based on expectancy of time to target arrival [Internet]. Experimental Brain Research. 2009 ; 1999 135-143.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-009-1987-y
  • Fonte: Experimental Brain Research. Unidade: EP

    Assuntos: BIOENGENHARIA, POSTURA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEZZARANE, Rinaldo Andre e KOHN, André Fábio. Postural control during kneeling. Experimental Brain Research, v. 187, n. 3, p. 395-405, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00221-008-1308-x. Acesso em: 24 abr. 2024.
    • APA

      Mezzarane, R. A., & Kohn, A. F. (2008). Postural control during kneeling. Experimental Brain Research, 187( 3), 395-405. doi:10.1007/s00221-008-1308-x
    • NLM

      Mezzarane RA, Kohn AF. Postural control during kneeling [Internet]. Experimental Brain Research. 2008 ;187( 3): 395-405.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-008-1308-x
    • Vancouver

      Mezzarane RA, Kohn AF. Postural control during kneeling [Internet]. Experimental Brain Research. 2008 ;187( 3): 395-405.[citado 2024 abr. 24 ] Available from: https://doi.org/10.1007/s00221-008-1308-x

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024