Filtros : "ACS Catalysis" Limpar

Filtros



Refine with date range


  • Source: ACS Catalysis. Unidades: FFCLRP, IQ

    Subjects: GLICOSE, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PASTRIÁN, Fabián Andee Cerda et al. Why could the nature of surface facets lead to differences in the activity and stability of `Cu IND. 2´O‑based electrocatalytic sensors?. ACS Catalysis, v. 8, p. 6265-6272, 2018Tradução . . Disponível em: https://doi.org/10.1021/acscatal.8b00726. Acesso em: 26 abr. 2024.
    • APA

      Pastrián, F. A. C., Silva, A. G. M. da, Dourado, A. H. B., Batista, A. P. de L., Oliveira Filho, A. G. S. de, Quiroz, J., et al. (2018). Why could the nature of surface facets lead to differences in the activity and stability of `Cu IND. 2´O‑based electrocatalytic sensors? ACS Catalysis, 8, 6265-6272. doi:10.1021/acscatal.8b00726
    • NLM

      Pastrián FAC, Silva AGM da, Dourado AHB, Batista AP de L, Oliveira Filho AGS de, Quiroz J, Oliveira DC de, Camargo PHC de, Torresi SIC de. Why could the nature of surface facets lead to differences in the activity and stability of `Cu IND. 2´O‑based electrocatalytic sensors? [Internet]. ACS Catalysis. 2018 ; 8 6265-6272.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.8b00726
    • Vancouver

      Pastrián FAC, Silva AGM da, Dourado AHB, Batista AP de L, Oliveira Filho AGS de, Quiroz J, Oliveira DC de, Camargo PHC de, Torresi SIC de. Why could the nature of surface facets lead to differences in the activity and stability of `Cu IND. 2´O‑based electrocatalytic sensors? [Internet]. ACS Catalysis. 2018 ; 8 6265-6272.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.8b00726
  • Source: ACS Catalysis. Unidades: IB, FMRP, IQ

    Subjects: ESTRESSE OXIDATIVO, TUBERCULOSE, STREPTOCOCCUS PNEUMONIAE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOMINGOS, Renato M et al. Substrate and product-assisted catalysis: molecular Aspects behind structural switches along organic Hydroperoxide resistance protein catalytic cycle. ACS Catalysis, v. 10, p. 6587−6602, 2020Tradução . . Disponível em: https://doi.org/10.1021/acscatal.0c01257. Acesso em: 26 abr. 2024.
    • APA

      Domingos, R. M., Teixeira, R. D., Zeida, A., Agudelo, W. A., Alegria, T. G. P., Silva Neto, J. F. da, et al. (2020). Substrate and product-assisted catalysis: molecular Aspects behind structural switches along organic Hydroperoxide resistance protein catalytic cycle. ACS Catalysis, 10, 6587−6602. doi:10.1021/acscatal.0c01257
    • NLM

      Domingos RM, Teixeira RD, Zeida A, Agudelo WA, Alegria TGP, Silva Neto JF da, Vieira PS, Murakami MT, Farah CS, Estrin DA, Netto LES. Substrate and product-assisted catalysis: molecular Aspects behind structural switches along organic Hydroperoxide resistance protein catalytic cycle [Internet]. ACS Catalysis. 2020 ; 10 6587−6602.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.0c01257
    • Vancouver

      Domingos RM, Teixeira RD, Zeida A, Agudelo WA, Alegria TGP, Silva Neto JF da, Vieira PS, Murakami MT, Farah CS, Estrin DA, Netto LES. Substrate and product-assisted catalysis: molecular Aspects behind structural switches along organic Hydroperoxide resistance protein catalytic cycle [Internet]. ACS Catalysis. 2020 ; 10 6587−6602.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.0c01257
  • Source: ACS Catalysis. Unidade: IQSC

    Assunto: ELETROCATÁLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Amanda Cristina et al. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electr-oxidation of glycerol. ACS Catalysis, v. 6, n. 7, p. 4491-4500, 2016Tradução . . Disponível em: https://doi.org/10.1021/acscatal.6b00709. Acesso em: 26 abr. 2024.
    • APA

      Garcia, A. C., Kolb, M. J., Nierop y Sanchez, C. van, Vos, J., Birdja, Y., Kwon, Y., et al. (2016). Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electr-oxidation of glycerol. ACS Catalysis, 6( 7), 4491-4500. doi:10.1021/acscatal.6b00709
    • NLM

      Garcia AC, Kolb MJ, Nierop y Sanchez C van, Vos J, Birdja Y, Kwon Y, Tremiliosi Filho G, Koper MTM. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electr-oxidation of glycerol [Internet]. ACS Catalysis. 2016 ; 6( 7): 4491-4500.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.6b00709
    • Vancouver

      Garcia AC, Kolb MJ, Nierop y Sanchez C van, Vos J, Birdja Y, Kwon Y, Tremiliosi Filho G, Koper MTM. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electr-oxidation of glycerol [Internet]. ACS Catalysis. 2016 ; 6( 7): 4491-4500.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.6b00709
  • Source: ACS Catalysis. Unidade: IQSC

    Assunto: ELETROCATÁLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VOS, Johannes G et al. Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media. ACS Catalysis, v. 9, p. 8561-8574, 2019Tradução . . Disponível em: https://doi.org/10.1021/acscatal.9b01159. Acesso em: 26 abr. 2024.
    • APA

      Vos, J. G., Liu, Z., Speck, F. D., Perini, N., Fu, W., Cherevko, S., & Koper, M. T. M. (2019). Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media. ACS Catalysis, 9, 8561-8574. doi:10.1021/acscatal.9b01159
    • NLM

      Vos JG, Liu Z, Speck FD, Perini N, Fu W, Cherevko S, Koper MTM. Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media [Internet]. ACS Catalysis. 2019 ; 9 8561-8574.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.9b01159
    • Vancouver

      Vos JG, Liu Z, Speck FD, Perini N, Fu W, Cherevko S, Koper MTM. Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media [Internet]. ACS Catalysis. 2019 ; 9 8561-8574.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.9b01159
  • Source: ACS Catalysis. Unidade: IQSC

    Assunto: GLICOSÍDEOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Andressa Ribeiro et al. Protein oligomerization based on brønsted acid reaction. ACS Catalysis, v. 7, p. 3082-3088, 2017Tradução . . Disponível em: https://doi.org/10.1021/acscatal.7b00272. Acesso em: 26 abr. 2024.
    • APA

      Pereira, A. R., Luz, R. A. de S., Lima, F. C. D. A., & Crespilho, F. N. (2017). Protein oligomerization based on brønsted acid reaction. ACS Catalysis, 7, 3082-3088. doi:10.1021/acscatal.7b00272
    • NLM

      Pereira AR, Luz RA de S, Lima FCDA, Crespilho FN. Protein oligomerization based on brønsted acid reaction [Internet]. ACS Catalysis. 2017 ; 7 3082-3088.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.7b00272
    • Vancouver

      Pereira AR, Luz RA de S, Lima FCDA, Crespilho FN. Protein oligomerization based on brønsted acid reaction [Internet]. ACS Catalysis. 2017 ; 7 3082-3088.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.7b00272
  • Source: ACS Catalysis. Unidade: IQSC

    Assunto: ELETROQUÍMICA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES-MARÍN, Ana Maria e FELIU, Juan M e TICIANELLI, Edson Antonio. Oxygen reduction on platinum surfaces in acid media: experimental evidence of a CECE/DISP initial reaction path. ACS Catalysis, v. 9, n. 3, p. 2238-2252, 2019Tradução . . Disponível em: https://doi.org/10.1021/acscatal.8b03351. Acesso em: 26 abr. 2024.
    • APA

      Gomes-Marín, A. M., Feliu, J. M., & Ticianelli, E. A. (2019). Oxygen reduction on platinum surfaces in acid media: experimental evidence of a CECE/DISP initial reaction path. ACS Catalysis, 9( 3), 2238-2252. doi:10.1021/acscatal.8b03351
    • NLM

      Gomes-Marín AM, Feliu JM, Ticianelli EA. Oxygen reduction on platinum surfaces in acid media: experimental evidence of a CECE/DISP initial reaction path [Internet]. ACS Catalysis. 2019 ;9( 3): 2238-2252.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.8b03351
    • Vancouver

      Gomes-Marín AM, Feliu JM, Ticianelli EA. Oxygen reduction on platinum surfaces in acid media: experimental evidence of a CECE/DISP initial reaction path [Internet]. ACS Catalysis. 2019 ;9( 3): 2238-2252.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.8b03351
  • Source: ACS Catalysis. Unidade: IQSC

    Subjects: IRÍDIO, ELETROCATÁLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Camila Daiane Ferreira da et al. Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts. ACS Catalysis, v. 11, p. 4107−4116, 2021Tradução . . Disponível em: https://doi.org/10.1021/acscatal.0c04613. Acesso em: 26 abr. 2024.
    • APA

      Silva, C. D. F. da, Claudel, F., Martin, V., Chattot, R., Abbou, S., Kumar, K., et al. (2021). Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts. ACS Catalysis, 11, 4107−4116. doi:10.1021/acscatal.0c04613
    • NLM

      Silva CDF da, Claudel F, Martin V, Chattot R, Abbou S, Kumar K, Jiménez-Morales I, Cavaliere S, Jones D, Roziere J, Sola-Hernandez L, Beauger C, Faustini M, Peron J, Gilles B, Encinas T, Piccolo L, Lima FHB de, Dubau L, Maillard F. Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts [Internet]. ACS Catalysis. 2021 ;11 4107−4116.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.0c04613
    • Vancouver

      Silva CDF da, Claudel F, Martin V, Chattot R, Abbou S, Kumar K, Jiménez-Morales I, Cavaliere S, Jones D, Roziere J, Sola-Hernandez L, Beauger C, Faustini M, Peron J, Gilles B, Encinas T, Piccolo L, Lima FHB de, Dubau L, Maillard F. Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts [Internet]. ACS Catalysis. 2021 ;11 4107−4116.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.0c04613
  • Source: ACS Catalysis. Unidade: IQSC

    Assunto: ELETROCATÁLISE

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAGAO, Raphael et al. Oscillatory electro-oxidation of methanol on nanoarchitectured Ptpc/ Rh/Pt metallic multilayer. ACS Catalysis, v. 5, n. 2, p. 1045-1052, 2015Tradução . . Disponível em: http://pubs.acs.org/doi/pdf/10.1021/cs501652u. Acesso em: 26 abr. 2024.
    • APA

      Nagao, R., Freitas, R. G. de, Silva, C. D., Varela, H., & Pereira, E. C. (2015). Oscillatory electro-oxidation of methanol on nanoarchitectured Ptpc/ Rh/Pt metallic multilayer. ACS Catalysis, 5( 2), 1045-1052. doi:10.1021/cs501652u
    • NLM

      Nagao R, Freitas RG de, Silva CD, Varela H, Pereira EC. Oscillatory electro-oxidation of methanol on nanoarchitectured Ptpc/ Rh/Pt metallic multilayer [Internet]. ACS Catalysis. 2015 ; 5( 2): 1045-1052.[citado 2024 abr. 26 ] Available from: http://pubs.acs.org/doi/pdf/10.1021/cs501652u
    • Vancouver

      Nagao R, Freitas RG de, Silva CD, Varela H, Pereira EC. Oscillatory electro-oxidation of methanol on nanoarchitectured Ptpc/ Rh/Pt metallic multilayer [Internet]. ACS Catalysis. 2015 ; 5( 2): 1045-1052.[citado 2024 abr. 26 ] Available from: http://pubs.acs.org/doi/pdf/10.1021/cs501652u
  • Source: ACS Catalysis. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NÍQUEL, PALÁDIO, HIDROGENAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Natália de Jesus da Silva et al. Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts. ACS Catalysis, v. 4, n. 6, p. 1735-1742, 2014Tradução . . Disponível em: https://doi.org/10.1021/cs500337a. Acesso em: 26 abr. 2024.
    • APA

      Costa, N. de J. da S., Guerrero, M., Collière, V., Teixeira Neto, É., Landers, R., Philippot, K., & Rossi, L. M. (2014). Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts. ACS Catalysis, 4( 6), 1735-1742. doi:10.1021/cs500337a
    • NLM

      Costa N de J da S, Guerrero M, Collière V, Teixeira Neto É, Landers R, Philippot K, Rossi LM. Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts [Internet]. ACS Catalysis. 2014 ; 4( 6): 1735-1742.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/cs500337a
    • Vancouver

      Costa N de J da S, Guerrero M, Collière V, Teixeira Neto É, Landers R, Philippot K, Rossi LM. Organometallic preparation of Ni, Pd, and NiPd nanoparticles for the design of supported nanocatalysts [Internet]. ACS Catalysis. 2014 ; 4( 6): 1735-1742.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/cs500337a
  • Source: ACS Catalysis. Unidades: IQ, IQSC, CENA

    Assunto: ELETROQUÍMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOURADO, André H. B et al. Opportunities and Knowledge Gaps of SO2 Electrocatalytic Oxidation for H2 Electrochemical Generation. ACS Catalysis, v. 9, n. 3, p. 8136-8143, 2019Tradução . . Disponível em: https://doi.org/10.1021/acscatal.9b01336. Acesso em: 26 abr. 2024.
    • APA

      Dourado, A. H. B., Munhos, R. L., Silva Junior, N., Del Colle, V., Carvalho, G. G. A. de, Oliveira, P. V. de, et al. (2019). Opportunities and Knowledge Gaps of SO2 Electrocatalytic Oxidation for H2 Electrochemical Generation. ACS Catalysis, 9( 3), 8136-8143. doi:10.1021/acscatal.9b01336
    • NLM

      Dourado AHB, Munhos RL, Silva Junior N, Del Colle V, Carvalho GGA de, Oliveira PV de, Arenz M, Varela H, Torresi SIC de. Opportunities and Knowledge Gaps of SO2 Electrocatalytic Oxidation for H2 Electrochemical Generation [Internet]. ACS Catalysis. 2019 ; 9( 3): 8136-8143.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.9b01336
    • Vancouver

      Dourado AHB, Munhos RL, Silva Junior N, Del Colle V, Carvalho GGA de, Oliveira PV de, Arenz M, Varela H, Torresi SIC de. Opportunities and Knowledge Gaps of SO2 Electrocatalytic Oxidation for H2 Electrochemical Generation [Internet]. ACS Catalysis. 2019 ; 9( 3): 8136-8143.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.9b01336
  • Source: ACS Catalysis. Unidade: IQSC

    Assunto: ELETROQUÍMICA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMEZ MARIN, Ana Maria e FELIU, Juan M e TICIANELLI, Edson Antonio. On the reaction mechanism for oxygen reduction on platinum: Existence of a fast initial chemical step and a soluble species different to H2O2. ACS Catalysis, v. 8, p. 7931-7943, 2018Tradução . . Disponível em: https://doi.org/10.1021/acscatal.8b01291. Acesso em: 26 abr. 2024.
    • APA

      Gomez Marin, A. M., Feliu, J. M., & Ticianelli, E. A. (2018). On the reaction mechanism for oxygen reduction on platinum: Existence of a fast initial chemical step and a soluble species different to H2O2. ACS Catalysis, 8, 7931-7943. doi:10.1021/acscatal.8b01291
    • NLM

      Gomez Marin AM, Feliu JM, Ticianelli EA. On the reaction mechanism for oxygen reduction on platinum: Existence of a fast initial chemical step and a soluble species different to H2O2 [Internet]. ACS Catalysis. 2018 ;8 7931-7943.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.8b01291
    • Vancouver

      Gomez Marin AM, Feliu JM, Ticianelli EA. On the reaction mechanism for oxygen reduction on platinum: Existence of a fast initial chemical step and a soluble species different to H2O2 [Internet]. ACS Catalysis. 2018 ;8 7931-7943.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.8b01291
  • Source: ACS Catalysis. Unidades: RUSP, IQSC

    Subjects: ÁLCOOL, ELETRODO, PLATINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALAZAR, Enrique Adalberto Paredes e CÁRDENAS, Alfredo Calderón e VARELA, Hamilton. Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum. ACS Catalysis, v. 13, n. 14, p. 9366–9378, 2023Tradução . . Disponível em: https://doi.org/10.1021/acscatal.3c00838. Acesso em: 26 abr. 2024.
    • APA

      Salazar, E. A. P., Cárdenas, A. C., & Varela, H. (2023). Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum. ACS Catalysis, 13( 14), 9366–9378. doi:10.1021/acscatal.3c00838
    • NLM

      Salazar EAP, Cárdenas AC, Varela H. Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum [Internet]. ACS Catalysis. 2023 ; 13( 14): 9366–9378.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.3c00838
    • Vancouver

      Salazar EAP, Cárdenas AC, Varela H. Microkinetic Modeling of the Methanol Electro-oxidation Reaction on Platinum [Internet]. ACS Catalysis. 2023 ; 13( 14): 9366–9378.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.3c00838
  • Source: ACS Catalysis. Unidade: IQ

    Subjects: CATÁLISE, LIPASE, MATERIAIS NANOESTRUTURADOS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Heloise Ribeiro de et al. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catalysis, v. 11, p. 414−423, 2021Tradução . . Disponível em: https://doi.org/10.1021/acscatal.0c04919. Acesso em: 26 abr. 2024.
    • APA

      Barros, H. R. de, García, I., Kuttner, C., Zeballos, N., Camargo, P. H. C. de, Torresi, S. I. C. de, et al. (2021). Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catalysis, 11, 414−423. doi:10.1021/acscatal.0c04919
    • NLM

      Barros HR de, García I, Kuttner C, Zeballos N, Camargo PHC de, Torresi SIC de, Gallego FL, Liz Marzán LM. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials [Internet]. ACS Catalysis. 2021 ; 11 414−423.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.0c04919
    • Vancouver

      Barros HR de, García I, Kuttner C, Zeballos N, Camargo PHC de, Torresi SIC de, Gallego FL, Liz Marzán LM. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials [Internet]. ACS Catalysis. 2021 ; 11 414−423.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.0c04919
  • Source: ACS Catalysis. Unidade: ICB

    Subjects: MICROBIOLOGIA, AMINOGLICOSÍDEOS, ANTIBIÓTICOS, ENZIMAS, ATIVAÇÃO ENZIMÁTICA, INFECÇÕES BACTERIANAS GRAM-NEGATIVAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Sicong et al. Mechanistic insights into dideoxygenation in gentamicin biosynthesis. ACS Catalysis, v. 11, n. 19, p. 12274–12283, 2021Tradução . . Disponível em: https://doi.org/10.1021/acscatal.1c03508. Acesso em: 26 abr. 2024.
    • APA

      Li, S., Bury, P. D. S., Huang, F., Guo, J., Sun, G., Reva, A., et al. (2021). Mechanistic insights into dideoxygenation in gentamicin biosynthesis. ACS Catalysis, 11( 19), 12274–12283. doi:10.1021/acscatal.1c03508
    • NLM

      Li S, Bury PDS, Huang F, Guo J, Sun G, Reva A, Huang C, Jian X, Li Y, Zhou J, Deng Z, Leeper FJ, Leadlay PF, Dias MVB, Sun Y. Mechanistic insights into dideoxygenation in gentamicin biosynthesis [Internet]. ACS Catalysis. 2021 ; 11( 19): 12274–12283.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.1c03508
    • Vancouver

      Li S, Bury PDS, Huang F, Guo J, Sun G, Reva A, Huang C, Jian X, Li Y, Zhou J, Deng Z, Leeper FJ, Leadlay PF, Dias MVB, Sun Y. Mechanistic insights into dideoxygenation in gentamicin biosynthesis [Internet]. ACS Catalysis. 2021 ; 11( 19): 12274–12283.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.1c03508
  • Source: ACS Catalysis. Unidade: CENA

    Subjects: BACTÉRIAS TOXICOGÊNICAS, ESPECTROSCOPIA, ISÓTOPOS ESTÁVEIS, CRISTALOGRAFIA DE RAIOS X

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDOZA, Jennifer L et al. Mechanistic and Structural Insights into a Divergent PLP-Dependent l-Enduracididine Cyclase from a Toxic Cyanobacterium. ACS Catalysis, v. 13, p. 9817-9828, 2023Tradução . . Disponível em: https://doi.org/10.1021/acscatal.3c01294. Acesso em: 26 abr. 2024.
    • APA

      Cordoza, J. L., Chen, P. Y. -T., Blaustein, L. R., Lima, S. T. de, Fiore, M. de F., Chekan, J. R., et al. (2023). Mechanistic and Structural Insights into a Divergent PLP-Dependent l-Enduracididine Cyclase from a Toxic Cyanobacterium. ACS Catalysis, 13, 9817-9828. doi:10.1021/acscatal.3c01294
    • NLM

      Cordoza JL, Chen PY-T, Blaustein LR, Lima ST de, Fiore M de F, Chekan JR, Moore BS, McKinnie SMK. Mechanistic and Structural Insights into a Divergent PLP-Dependent l-Enduracididine Cyclase from a Toxic Cyanobacterium [Internet]. ACS Catalysis. 2023 ; 13 9817-9828.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.3c01294
    • Vancouver

      Cordoza JL, Chen PY-T, Blaustein LR, Lima ST de, Fiore M de F, Chekan JR, Moore BS, McKinnie SMK. Mechanistic and Structural Insights into a Divergent PLP-Dependent l-Enduracididine Cyclase from a Toxic Cyanobacterium [Internet]. ACS Catalysis. 2023 ; 13 9817-9828.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.3c01294
  • Source: ACS Catalysis. Unidade: CENA

    Subjects: NANOPARTÍCULAS, METANOL, HIDROGENAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIORDALISO, Elisabetta M et al. Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catalysis, v. 5, n. 10, p. 5827-5836, 2015Tradução . . Disponível em: https://doi.org/10.1021/acscatal.5b01271. Acesso em: 26 abr. 2024.
    • APA

      Fiordaliso, E. M., Sharafutdinov, I., Carvalho, H. W. P. de, Grunwaldt, J. -D., Hansen, T. W., Chorkendorff, I., et al. (2015). Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catalysis, 5( 10), 5827-5836. doi:10.1021/acscatal.5b01271
    • NLM

      Fiordaliso EM, Sharafutdinov I, Carvalho HWP de, Grunwaldt J-D, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD. Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization [Internet]. ACS Catalysis. 2015 ;5( 10): 5827-5836.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.5b01271
    • Vancouver

      Fiordaliso EM, Sharafutdinov I, Carvalho HWP de, Grunwaldt J-D, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD. Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization [Internet]. ACS Catalysis. 2015 ;5( 10): 5827-5836.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.5b01271
  • Source: ACS Catalysis. Unidades: FFCLRP, IQ

    Subjects: OURO, RÓDIO, CATÁLISE, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Maria Paula de Souza et al. Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light. ACS Catalysis, v. 13, p. 267−279, 2023Tradução . . Disponível em: https://doi.org/10.1021/acscatal.2c04207. Acesso em: 26 abr. 2024.
    • APA

      Rodrigues, M. P. de S., Dourado, A. H. B., Oliveira Filho, A. G. S. de, Batista, A. P. de L., Feil, M., Krischer, K., & Torresi, S. I. C. de. (2023). Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light. ACS Catalysis, 13, 267−279. doi:10.1021/acscatal.2c04207
    • NLM

      Rodrigues MP de S, Dourado AHB, Oliveira Filho AGS de, Batista AP de L, Feil M, Krischer K, Torresi SIC de. Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light [Internet]. ACS Catalysis. 2023 ; 13 267−279.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.2c04207
    • Vancouver

      Rodrigues MP de S, Dourado AHB, Oliveira Filho AGS de, Batista AP de L, Feil M, Krischer K, Torresi SIC de. Gold−rhodium nanoflowers for the plasmon-enhanced CO2 electroreduction reaction upon visible light [Internet]. ACS Catalysis. 2023 ; 13 267−279.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.2c04207
  • Source: ACS Catalysis. Unidades: IQ, ESALQ

    Subjects: NANOPARTÍCULAS, OURO, HIDROGÊNIO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Maria Paula de Souza et al. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light. ACS Catalysis, v. 11, n. 21, p. 13543−13555, 2021Tradução . . Disponível em: https://doi.org/10.1021/acscatal.1c02938. Acesso em: 26 abr. 2024.
    • APA

      Rodrigues, M. P. de S., Dourado, A. H. B., Cutolo, L. de O., Parreira, L. S., Alves, T. V., Slater, T. J. A., et al. (2021). Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light. ACS Catalysis, 11( 21), 13543−13555. doi:10.1021/acscatal.1c02938
    • NLM

      Rodrigues MP de S, Dourado AHB, Cutolo L de O, Parreira LS, Alves TV, Slater TJA, Haigh SJ, Camargo PHC de, Torresi SIC de. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light [Internet]. ACS Catalysis. 2021 ; 11( 21): 13543−13555.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.1c02938
    • Vancouver

      Rodrigues MP de S, Dourado AHB, Cutolo L de O, Parreira LS, Alves TV, Slater TJA, Haigh SJ, Camargo PHC de, Torresi SIC de. Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution Reaction under visible light [Internet]. ACS Catalysis. 2021 ; 11( 21): 13543−13555.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.1c02938
  • Source: ACS Catalysis. Unidade: IQ

    Subjects: HIDROGENAÇÃO, OURO, ADSORÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIORIO, Jhonatan L e LÓPEZ, Núria e ROSSI, Liane Marcia. Gold-ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H-2 heterolytic activation by frustrated lewis pairs. ACS Catalysis, v. 7, n. 4, p. 2973-2980, 2017Tradução . . Disponível em: https://doi.org/10.1021/acscatal.6b03441. Acesso em: 26 abr. 2024.
    • APA

      Fiorio, J. L., López, N., & Rossi, L. M. (2017). Gold-ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H-2 heterolytic activation by frustrated lewis pairs. ACS Catalysis, 7( 4), 2973-2980. doi:10.1021/acscatal.6b03441
    • NLM

      Fiorio JL, López N, Rossi LM. Gold-ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H-2 heterolytic activation by frustrated lewis pairs [Internet]. ACS Catalysis. 2017 ; 7( 4): 2973-2980.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.6b03441
    • Vancouver

      Fiorio JL, López N, Rossi LM. Gold-ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H-2 heterolytic activation by frustrated lewis pairs [Internet]. ACS Catalysis. 2017 ; 7( 4): 2973-2980.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.6b03441
  • Source: ACS Catalysis. Unidade: IQSC

    Subjects: OXIDAÇÃO, ELETROQUÍMICA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Pablo S et al. Establishing a Link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electrooxidation of glycerol?. ACS Catalysis, v. 5, p. 4227-4236, 2015Tradução . . Disponível em: https://doi.org/10.1021/acscatal.5b00451. Acesso em: 26 abr. 2024.
    • APA

      Fernández, P. S., Gomes, J. F., Angelucci, C. A., Tereshchuk, P., Martins, C. A., Câmara, G. A., et al. (2015). Establishing a Link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electrooxidation of glycerol? ACS Catalysis, 5, 4227-4236. doi:10.1021/acscatal.5b00451
    • NLM

      Fernández PS, Gomes JF, Angelucci CA, Tereshchuk P, Martins CA, Câmara GA, Martins ME, Silva JLF da, Tremiliosi Filho G. Establishing a Link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electrooxidation of glycerol? [Internet]. ACS Catalysis. 2015 ; 5 4227-4236.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.5b00451
    • Vancouver

      Fernández PS, Gomes JF, Angelucci CA, Tereshchuk P, Martins CA, Câmara GA, Martins ME, Silva JLF da, Tremiliosi Filho G. Establishing a Link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electrooxidation of glycerol? [Internet]. ACS Catalysis. 2015 ; 5 4227-4236.[citado 2024 abr. 26 ] Available from: https://doi.org/10.1021/acscatal.5b00451

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024