Filtros : "Nonlinearity" Removido: "Financiamento CNPq" Limpar

Filtros



Limitar por data


  • Fonte: Nonlinearity. Unidade: IME

    Assunto: ESTATÍSTICA E PROBABILIDADE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Pedro e BARROS, Matheus e LIMA, Yuri Gomes. Pólya urns on hypergraphs. Nonlinearity, v. 38, n. 7, 2025Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/addbbc. Acesso em: 16 jun. 2025.
    • APA

      Alves, P., Barros, M., & Lima, Y. G. (2025). Pólya urns on hypergraphs. Nonlinearity, 38( 7). doi:10.1088/1361-6544/addbbc
    • NLM

      Alves P, Barros M, Lima YG. Pólya urns on hypergraphs [Internet]. Nonlinearity. 2025 ; 38( 7):[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/addbbc
    • Vancouver

      Alves P, Barros M, Lima YG. Pólya urns on hypergraphs [Internet]. Nonlinearity. 2025 ; 38( 7):[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/addbbc
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Xiao-Chuan e TAL, Fábio Armando. On non-contractible periodic orbits and bounded deviations. Nonlinearity, v. 37, n. artigo 075007, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad4948. Acesso em: 16 jun. 2025.
    • APA

      Liu, X. -C., & Tal, F. A. (2024). On non-contractible periodic orbits and bounded deviations. Nonlinearity, 37( artigo 075007), 1-26. doi:10.1088/1361-6544/ad4948
    • NLM

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
    • Vancouver

      Liu X-C, Tal FA. On non-contractible periodic orbits and bounded deviations [Internet]. Nonlinearity. 2024 ; 37( artigo 075007): 1-26.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad4948
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS, SIMETRIA, MECÂNICA ESTATÍSTICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMORIM, Tiago de Albuquerque e MANOEL, Miriam Garcia. The realisation of admissible graphs for coupled vector fields. Nonlinearity, v. 37, n. Ja 2024, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad0ca4. Acesso em: 16 jun. 2025.
    • APA

      Amorim, T. de A., & Manoel, M. G. (2024). The realisation of admissible graphs for coupled vector fields. Nonlinearity, 37( Ja 2024), 1-26. doi:10.1088/1361-6544/ad0ca4
    • NLM

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
    • Vancouver

      Amorim T de A, Manoel MG. The realisation of admissible graphs for coupled vector fields [Internet]. Nonlinearity. 2024 ; 37( Ja 2024): 1-26.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad0ca4
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: SOLITONS, EQUAÇÕES NÃO LINEARES, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, MECÂNICA QUÂNTICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, v. 37, n. artigo 045015, p. 1-43, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2eba. Acesso em: 16 jun. 2025.
    • APA

      Pava, J. A. (2024). Stability theory for two-lobe states on the tadpole graph for the NLS equation. Nonlinearity, 37( artigo 045015), 1-43. doi:10.1088/1361-6544/ad2eba
    • NLM

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
    • Vancouver

      Pava JA. Stability theory for two-lobe states on the tadpole graph for the NLS equation [Internet]. Nonlinearity. 2024 ; 37( artigo 045015): 1-43.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad2eba
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, HIPÉRBOLE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RONGE, R e ZAKS, M. A e PEREIRA, Tiago. Continua and persistence of periodic orbits in ensembles of oscillators. Nonlinearity, v. 37, p. 1-33, 2024Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ad2f5f. Acesso em: 16 jun. 2025.
    • APA

      Ronge, R., Zaks, M. A., & Pereira, T. (2024). Continua and persistence of periodic orbits in ensembles of oscillators. Nonlinearity, 37, 1-33. doi:10.1088/1361-6544/ad2f5f
    • NLM

      Ronge R, Zaks MA, Pereira T. Continua and persistence of periodic orbits in ensembles of oscillators [Internet]. Nonlinearity. 2024 ; 37 1-33.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad2f5f
    • Vancouver

      Ronge R, Zaks MA, Pereira T. Continua and persistence of periodic orbits in ensembles of oscillators [Internet]. Nonlinearity. 2024 ; 37 1-33.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ad2f5f
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRACHT, Sören von der e NIJHOUT, Eddie e RINK, Bob. Amplified steady state bifurcations in feedforward networks. Nonlinearity, v. 35, n. 4, p. 2073-2120, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac5463. Acesso em: 16 jun. 2025.
    • APA

      Gracht, S. von der, Nijhout, E., & Rink, B. (2022). Amplified steady state bifurcations in feedforward networks. Nonlinearity, 35( 4), 2073-2120. doi:10.1088/1361-6544/ac5463
    • NLM

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
    • Vancouver

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: REDES COMPLEXAS, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ELDERING, Jaap et al. Chimera states through invariant manifold theory. Nonlinearity, v. 34, n. 8, p. 5344-5374, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac0613. Acesso em: 16 jun. 2025.
    • APA

      Eldering, J., Lamb, J. S. W., Pereira, T., & Santos, E. R. dos. (2021). Chimera states through invariant manifold theory. Nonlinearity, 34( 8), 5344-5374. doi:10.1088/1361-6544/ac0613
    • NLM

      Eldering J, Lamb JSW, Pereira T, Santos ER dos. Chimera states through invariant manifold theory [Internet]. Nonlinearity. 2021 ; 34( 8): 5344-5374.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ac0613
    • Vancouver

      Eldering J, Lamb JSW, Pereira T, Santos ER dos. Chimera states through invariant manifold theory [Internet]. Nonlinearity. 2021 ; 34( 8): 5344-5374.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ac0613
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e CAVALCANTE, Márcio. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, v. 34, n. 5, p. 3373-3410, 2021Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/abea6b. Acesso em: 16 jun. 2025.
    • APA

      Pava, J. A., & Cavalcante, M. (2021). Linear instability criterion for the Korteweg–de Vries equation on metric star graphs. Nonlinearity, 34( 5), 3373-3410. doi:10.1088/1361-6544/abea6b
    • NLM

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
    • Vancouver

      Pava JA, Cavalcante M. Linear instability criterion for the Korteweg–de Vries equation on metric star graphs [Internet]. Nonlinearity. 2021 ; 34( 5): 3373-3410.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/abea6b
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, SIMETRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCURI, Carlo e MOREIRA DOS SANTOS, Ederson. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations. Nonlinearity, v. 32, n. 11, p. 4445-4464, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab2d6f. Acesso em: 16 jun. 2025.
    • APA

      Mercuri, C., & Moreira dos Santos, E. (2019). Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations. Nonlinearity, 32( 11), 4445-4464. doi:10.1088/1361-6544/ab2d6f
    • NLM

      Mercuri C, Moreira dos Santos E. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations [Internet]. Nonlinearity. 2019 ; 32( 11): 4445-4464.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab2d6f
    • Vancouver

      Mercuri C, Moreira dos Santos E. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations [Internet]. Nonlinearity. 2019 ; 32( 11): 4445-4464.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab2d6f
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: PROCESSOS ESTOCÁSTICOS, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e FREITAS, Ana Cristina Moreira e FREITAS, Jorge Milhazes. Clustering indices and decay of correlations in non-Markovian models. Nonlinearity, v. 32, p. 4853-4870, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab37b8. Acesso em: 16 jun. 2025.
    • APA

      Abadi, M. N., Freitas, A. C. M., & Freitas, J. M. (2019). Clustering indices and decay of correlations in non-Markovian models. Nonlinearity, 32, 4853-4870. doi:10.1088/1361-6544/ab37b8
    • NLM

      Abadi MN, Freitas ACM, Freitas JM. Clustering indices and decay of correlations in non-Markovian models [Internet]. Nonlinearity. 2019 ; 32 4853-4870.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab37b8
    • Vancouver

      Abadi MN, Freitas ACM, Freitas JM. Clustering indices and decay of correlations in non-Markovian models [Internet]. Nonlinearity. 2019 ; 32 4853-4870.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab37b8
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Rita de Cássia Dornelas Sodré e CARVALHO, Alexandre Nolasco de e VALERO, José. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, v. 32, n. 12, p. 4912-4941, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab3f55. Acesso em: 16 jun. 2025.
    • APA

      Broche, R. de C. D. S., Carvalho, A. N. de, & Valero, J. (2019). A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, 32( 12), 4912-4941. doi:10.1088/1361-6544/ab3f55
    • NLM

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
    • Vancouver

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRISOSTOMO, Jorge e TAHZIBI, Ali. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, v. 32, n. 2, p. 584-602, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aaec98. Acesso em: 16 jun. 2025.
    • APA

      Crisostomo, J., & Tahzibi, A. (2019). Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part. Nonlinearity, 32( 2), 584-602. doi:10.1088/1361-6544/aaec98
    • NLM

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
    • Vancouver

      Crisostomo J, Tahzibi A. Equilibrium states for partially hyperbolic diffeomorphisms with hyperbolic linear part [Internet]. Nonlinearity. 2019 ; 32( 2): 584-602.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aaec98
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo. Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity, v. 31, n. 3, p. 920-956, 2018Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aa99a2. Acesso em: 16 jun. 2025.
    • APA

      Pava, J. A. (2018). Stability properties of solitary waves for fractional KdV and BBM equations. Nonlinearity, 31( 3), 920-956. doi:10.1088/1361-6544/aa99a2
    • NLM

      Pava JA. Stability properties of solitary waves for fractional KdV and BBM equations [Internet]. Nonlinearity. 2018 ; 31( 3): 920-956.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aa99a2
    • Vancouver

      Pava JA. Stability properties of solitary waves for fractional KdV and BBM equations [Internet]. Nonlinearity. 2018 ; 31( 3): 920-956.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aa99a2
  • Fonte: Nonlinearity. Unidade: ICMC

    Assunto: SISTEMAS DINÂMICOS HOLOMORFOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIQUEIRA, Carlos e SMANIA, Daniel. Holomorphic motions for unicritical correspondences. Nonlinearity, v. 30, n. 8, p. 3104-3125, 2017Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/aa7736. Acesso em: 16 jun. 2025.
    • APA

      Siqueira, C., & Smania, D. (2017). Holomorphic motions for unicritical correspondences. Nonlinearity, 30( 8), 3104-3125. doi:10.1088/1361-6544/aa7736
    • NLM

      Siqueira C, Smania D. Holomorphic motions for unicritical correspondences [Internet]. Nonlinearity. 2017 ; 30( 8): 3104-3125.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aa7736
    • Vancouver

      Siqueira C, Smania D. Holomorphic motions for unicritical correspondences [Internet]. Nonlinearity. 2017 ; 30( 8): 3104-3125.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/1361-6544/aa7736
  • Fonte: Nonlinearity. Unidade: IFSC

    Assuntos: TEORIA DE CAMPOS, SOLITONS, FÍSICA TEÓRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Luiz Agostinho e ZAKRZEWSKI, Wojtek J. Breather-like structures in modified sine-Gordon models. Nonlinearity, v. 29, n. 5, p. 1622-1644, 2016Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/29/5/1622. Acesso em: 16 jun. 2025.
    • APA

      Ferreira, L. A., & Zakrzewski, W. J. (2016). Breather-like structures in modified sine-Gordon models. Nonlinearity, 29( 5), 1622-1644. doi:10.1088/0951-7715/29/5/1622
    • NLM

      Ferreira LA, Zakrzewski WJ. Breather-like structures in modified sine-Gordon models [Internet]. Nonlinearity. 2016 ; 29( 5): 1622-1644.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/29/5/1622
    • Vancouver

      Ferreira LA, Zakrzewski WJ. Breather-like structures in modified sine-Gordon models [Internet]. Nonlinearity. 2016 ; 29( 5): 1622-1644.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/29/5/1622
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia e ROBERTS, Mark. Gradient systems on coupled cell networks. Nonlinearity, v. 28, n. 10, p. 3487-3509, 2015Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/28/10/3487. Acesso em: 16 jun. 2025.
    • APA

      Manoel, M. G., & Roberts, M. (2015). Gradient systems on coupled cell networks. Nonlinearity, 28( 10), 3487-3509. doi:10.1088/0951-7715/28/10/3487
    • NLM

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
    • Vancouver

      Manoel MG, Roberts M. Gradient systems on coupled cell networks [Internet]. Nonlinearity. 2015 ; 28( 10): 3487-3509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/10/3487
  • Fonte: Nonlinearity. Unidade: IME

    Assuntos: BILHARES, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARKARIAN, Roberto et al. Stochastic perturbations of convex billiards. Nonlinearity, v. 28, n. 12, p. 4425-4434, 2015Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/28/12/4425. Acesso em: 16 jun. 2025.
    • APA

      Markarian, R., Rolla, L. T., Sidoravicius, V., Tal, F. A., & Vares, M. E. (2015). Stochastic perturbations of convex billiards. Nonlinearity, 28( 12), 4425-4434. doi:10.1088/0951-7715/28/12/4425
    • NLM

      Markarian R, Rolla LT, Sidoravicius V, Tal FA, Vares ME. Stochastic perturbations of convex billiards [Internet]. Nonlinearity. 2015 ; 28( 12): 4425-4434.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/12/4425
    • Vancouver

      Markarian R, Rolla LT, Sidoravicius V, Tal FA, Vares ME. Stochastic perturbations of convex billiards [Internet]. Nonlinearity. 2015 ; 28( 12): 4425-4434.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/28/12/4425
  • Fonte: Nonlinearity. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, TEORIA DE SISTEMAS E CONTROLE

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Arnaldo e PIRES, Benito e ROSALES, Rafael A. Asymptotically periodic piecewise contractions of the interval. Nonlinearity, v. 27, p. 1603-1610, 2014Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/27/7/1603. Acesso em: 16 jun. 2025.
    • APA

      Nogueira, A., Pires, B., & Rosales, R. A. (2014). Asymptotically periodic piecewise contractions of the interval. Nonlinearity, 27, 1603-1610. doi:10.1088/0951-7715/27/7/1603
    • NLM

      Nogueira A, Pires B, Rosales RA. Asymptotically periodic piecewise contractions of the interval [Internet]. Nonlinearity. 2014 ; 27 1603-1610.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/27/7/1603
    • Vancouver

      Nogueira A, Pires B, Rosales RA. Asymptotically periodic piecewise contractions of the interval [Internet]. Nonlinearity. 2014 ; 27 1603-1610.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/27/7/1603
  • Fonte: Nonlinearity. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e LAMBERT, Rodrigo. The distribution of the short-return function. Nonlinearity, v. 26, n. 5, p. 1143-1162, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/5/1143. Acesso em: 16 jun. 2025.
    • APA

      Abadi, M. N., & Lambert, R. (2013). The distribution of the short-return function. Nonlinearity, 26( 5), 1143-1162. doi:10.1088/0951-7715/26/5/1143
    • NLM

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
    • Vancouver

      Abadi MN, Lambert R. The distribution of the short-return function [Internet]. Nonlinearity. 2013 ; 26( 5): 1143-1162.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/5/1143
  • Fonte: Nonlinearity. Unidade: FFCLRP

    Assuntos: MATEMÁTICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Arnaldo e PIRES, Benito e TROUBETZKOY, Serge. Orbit structure of interval exchange transformations with flip. Nonlinearity, v. 26, n. 2, p. 525-537, 2013Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/26/2/525. Acesso em: 16 jun. 2025.
    • APA

      Nogueira, A., Pires, B., & Troubetzkoy, S. (2013). Orbit structure of interval exchange transformations with flip. Nonlinearity, 26( 2), 525-537. doi:10.1088/0951-7715/26/2/525
    • NLM

      Nogueira A, Pires B, Troubetzkoy S. Orbit structure of interval exchange transformations with flip [Internet]. Nonlinearity. 2013 ; 26( 2): 525-537.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/2/525
    • Vancouver

      Nogueira A, Pires B, Troubetzkoy S. Orbit structure of interval exchange transformations with flip [Internet]. Nonlinearity. 2013 ; 26( 2): 525-537.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1088/0951-7715/26/2/525

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025