Filtros : "Journal of the American Mathematical Society" Limpar

Filtros



Refine with date range


  • Source: Journal of the American Mathematical Society. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Puzzle geometry and rigidity: the fibonacci cycle is hyperbolic. Journal of the American Mathematical Society, v. 20, n. 3, p. 629-673, 2007Tradução . . Disponível em: https://doi.org/10.1090/s0894-0347-07-00550-4. Acesso em: 05 nov. 2024.
    • APA

      Smania, D. (2007). Puzzle geometry and rigidity: the fibonacci cycle is hyperbolic. Journal of the American Mathematical Society, 20( 3), 629-673. doi:10.1090/s0894-0347-07-00550-4
    • NLM

      Smania D. Puzzle geometry and rigidity: the fibonacci cycle is hyperbolic [Internet]. Journal of the American Mathematical Society. 2007 ; 20( 3): 629-673.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/s0894-0347-07-00550-4
    • Vancouver

      Smania D. Puzzle geometry and rigidity: the fibonacci cycle is hyperbolic [Internet]. Journal of the American Mathematical Society. 2007 ; 20( 3): 629-673.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/s0894-0347-07-00550-4
  • Source: Journal of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e UMIRBAEV, Ualbai U. The tame and the wild automorphisms of polynomial rings in three variables. Journal of the American Mathematical Society, v. 17, n. 1, p. 197-227, 2004Tradução . . Disponível em: https://doi.org/10.1090/S0894-0347-03-00440-5. Acesso em: 05 nov. 2024.
    • APA

      Shestakov, I. P., & Umirbaev, U. U. (2004). The tame and the wild automorphisms of polynomial rings in three variables. Journal of the American Mathematical Society, 17( 1), 197-227. doi:10.1090/S0894-0347-03-00440-5
    • NLM

      Shestakov IP, Umirbaev UU. The tame and the wild automorphisms of polynomial rings in three variables [Internet]. Journal of the American Mathematical Society. 2004 ; 17( 1): 197-227.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/S0894-0347-03-00440-5
    • Vancouver

      Shestakov IP, Umirbaev UU. The tame and the wild automorphisms of polynomial rings in three variables [Internet]. Journal of the American Mathematical Society. 2004 ; 17( 1): 197-227.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/S0894-0347-03-00440-5
  • Source: Journal of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e UMIRBAEV, Ualbai U. Poisson brackets and two-generated subalgebras of rings of polynomials. Journal of the American Mathematical Society, v. 17, n. 1, p. 181-197, 2004Tradução . . Disponível em: https://doi.org/10.1090/S0894-0347-03-00438-7. Acesso em: 05 nov. 2024.
    • APA

      Shestakov, I. P., & Umirbaev, U. U. (2004). Poisson brackets and two-generated subalgebras of rings of polynomials. Journal of the American Mathematical Society, 17( 1), 181-197. doi:10.1090/S0894-0347-03-00438-7
    • NLM

      Shestakov IP, Umirbaev UU. Poisson brackets and two-generated subalgebras of rings of polynomials [Internet]. Journal of the American Mathematical Society. 2004 ; 17( 1): 181-197.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/S0894-0347-03-00438-7
    • Vancouver

      Shestakov IP, Umirbaev UU. Poisson brackets and two-generated subalgebras of rings of polynomials [Internet]. Journal of the American Mathematical Society. 2004 ; 17( 1): 181-197.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/S0894-0347-03-00438-7
  • Source: Journal of the American Mathematical Society. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      STRIEN, Sebastian van e VARGAS, Edson. Real bounds, ergodicity and negative Schwarzian for multimodal maps. Journal of the American Mathematical Society, v. 17, n. 4, p. 749-782, 2004Tradução . . Disponível em: https://doi.org/10.1090/S0894-0347-04-00463-1. Acesso em: 05 nov. 2024.
    • APA

      Strien, S. van, & Vargas, E. (2004). Real bounds, ergodicity and negative Schwarzian for multimodal maps. Journal of the American Mathematical Society, 17( 4), 749-782. doi:10.1090/S0894-0347-04-00463-1
    • NLM

      Strien S van, Vargas E. Real bounds, ergodicity and negative Schwarzian for multimodal maps [Internet]. Journal of the American Mathematical Society. 2004 ; 17( 4): 749-782.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/S0894-0347-04-00463-1
    • Vancouver

      Strien S van, Vargas E. Real bounds, ergodicity and negative Schwarzian for multimodal maps [Internet]. Journal of the American Mathematical Society. 2004 ; 17( 4): 749-782.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1090/S0894-0347-04-00463-1
  • Source: Journal of the American Mathematical Society. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, HOLOMORFIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e MELO, Welington de. Rigidity of critical circle mappings II. Journal of the American Mathematical Society, v. 13, n. 2, p. 343-370, 2000Tradução . . Disponível em: https://doi.org/10.1007/s100970050011. Acesso em: 05 nov. 2024.
    • APA

      Faria, E. de, & Melo, W. de. (2000). Rigidity of critical circle mappings II. Journal of the American Mathematical Society, 13( 2), 343-370. doi:10.1007/s100970050011
    • NLM

      Faria E de, Melo W de. Rigidity of critical circle mappings II [Internet]. Journal of the American Mathematical Society. 2000 ; 13( 2): 343-370.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s100970050011
    • Vancouver

      Faria E de, Melo W de. Rigidity of critical circle mappings II [Internet]. Journal of the American Mathematical Society. 2000 ; 13( 2): 343-370.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s100970050011
  • Source: Journal of the American Mathematical Society. Unidade: IME

    Assunto: ÁLGEBRA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOUVEA, F Q. Square-free sieve and the eank of mordell-weil. Journal of the American Mathematical Society, v. 4 , p. 1-33, 1991Tradução . . Acesso em: 05 nov. 2024.
    • APA

      Gouvea, F. Q. (1991). Square-free sieve and the eank of mordell-weil. Journal of the American Mathematical Society, 4 , 1-33.
    • NLM

      Gouvea FQ. Square-free sieve and the eank of mordell-weil. Journal of the American Mathematical Society. 1991 ;4 1-33.[citado 2024 nov. 05 ]
    • Vancouver

      Gouvea FQ. Square-free sieve and the eank of mordell-weil. Journal of the American Mathematical Society. 1991 ;4 1-33.[citado 2024 nov. 05 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024