Filtros : "Journal of Mathematical Analysis and its Applications" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO, Jesus M. F e FERENCZI, Valentin e MORENO, Yolanda. On Uniformly Finitely Extensible Banach spaces. Journal of Mathematical Analysis and its Applications, v. 410, n. 2, p. 670-686, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2013.08.053. Acesso em: 08 nov. 2025.
    • APA

      Castillo, J. M. F., Ferenczi, V., & Moreno, Y. (2014). On Uniformly Finitely Extensible Banach spaces. Journal of Mathematical Analysis and its Applications, 410( 2), 670-686. doi:10.1016/j.jmaa.2013.08.053
    • NLM

      Castillo JMF, Ferenczi V, Moreno Y. On Uniformly Finitely Extensible Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2014 ; 410( 2): 670-686.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2013.08.053
    • Vancouver

      Castillo JMF, Ferenczi V, Moreno Y. On Uniformly Finitely Extensible Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2014 ; 410( 2): 670-686.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2013.08.053
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE LORENTZ

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHAVES, Rosa Maria dos Santos Barreiro e DUSSAN, Martha P e MAGID, M. Bjorling problem for timelike surfaces in the Lorentz-Minkowski space. Journal of Mathematical Analysis and its Applications, v. 377, n. 2, p. 481-494, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2010.10.076. Acesso em: 08 nov. 2025.
    • APA

      Chaves, R. M. dos S. B., Dussan, M. P., & Magid, M. (2011). Bjorling problem for timelike surfaces in the Lorentz-Minkowski space. Journal of Mathematical Analysis and its Applications, 377( 2), 481-494. doi:10.1016/j.jmaa.2010.10.076
    • NLM

      Chaves RM dos SB, Dussan MP, Magid M. Bjorling problem for timelike surfaces in the Lorentz-Minkowski space [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 377( 2): 481-494.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2010.10.076
    • Vancouver

      Chaves RM dos SB, Dussan MP, Magid M. Bjorling problem for timelike surfaces in the Lorentz-Minkowski space [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 377( 2): 481-494.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2010.10.076
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: FUNÇÕES GENERALIZADAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDEZ, Roseli. On the Hamilton-Jacobi equation in the framework of generalized functions. Journal of Mathematical Analysis and its Applications, v. 382, n. 1, p. 487-502, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2011.04.069. Acesso em: 08 nov. 2025.
    • APA

      Fernandez, R. (2011). On the Hamilton-Jacobi equation in the framework of generalized functions. Journal of Mathematical Analysis and its Applications, 382( 1), 487-502. doi:10.1016/j.jmaa.2011.04.069
    • NLM

      Fernandez R. On the Hamilton-Jacobi equation in the framework of generalized functions [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 382( 1): 487-502.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2011.04.069
    • Vancouver

      Fernandez R. On the Hamilton-Jacobi equation in the framework of generalized functions [Internet]. Journal of Mathematical Analysis and its Applications. 2011 ; 382( 1): 487-502.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2011.04.069
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e CÓNSUL, Neus e OLIVA, Sérgio Muniz. Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and its Applications, v. 361, n. 1, p. 19-37, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2009.09.018. Acesso em: 08 nov. 2025.
    • APA

      Arrieta, J. M., Cónsul, N., & Oliva, S. M. (2010). Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and its Applications, 361( 1), 19-37. doi:10.1016/j.jmaa.2009.09.018
    • NLM

      Arrieta JM, Cónsul N, Oliva SM. Cascades of Hopf bifurcations from boundary delay [Internet]. Journal of Mathematical Analysis and its Applications. 2010 ; 361( 1): 19-37.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2009.09.018
    • Vancouver

      Arrieta JM, Cónsul N, Oliva SM. Cascades of Hopf bifurcations from boundary delay [Internet]. Journal of Mathematical Analysis and its Applications. 2010 ; 361( 1): 19-37.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2009.09.018
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. Towards a maximal extension of Pelczynski's decomposition method in Banach spaces. Journal of Mathematical Analysis and its Applications, v. 356, n. 1, p. 86-95, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2009.01.077. Acesso em: 08 nov. 2025.
    • APA

      Galego, E. M. (2009). Towards a maximal extension of Pelczynski's decomposition method in Banach spaces. Journal of Mathematical Analysis and its Applications, 356( 1), 86-95. doi:10.1016/j.jmaa.2009.01.077
    • NLM

      Galego EM. Towards a maximal extension of Pelczynski's decomposition method in Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2009 ; 356( 1): 86-95.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2009.01.077
    • Vancouver

      Galego EM. Towards a maximal extension of Pelczynski's decomposition method in Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2009 ; 356( 1): 86-95.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2009.01.077
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. A family of Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, v. 341, n. 2, p. 1181-1189, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2007.11.003. Acesso em: 08 nov. 2025.
    • APA

      Galego, E. M. (2008). A family of Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, 341( 2), 1181-1189. doi:10.1016/j.jmaa.2007.11.003
    • NLM

      Galego EM. A family of Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 341( 2): 1181-1189.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2007.11.003
    • Vancouver

      Galego EM. A family of Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 341( 2): 1181-1189.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2007.11.003
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. Some Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, v. 338, n. 1, p. 653-661, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2007.04.078. Acesso em: 08 nov. 2025.
    • APA

      Galego, E. M. (2008). Some Schroeder-Bernstein type theorems for Banach spaces. Journal of Mathematical Analysis and its Applications, 338( 1), 653-661. doi:10.1016/j.jmaa.2007.04.078
    • NLM

      Galego EM. Some Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 338( 1): 653-661.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2007.04.078
    • Vancouver

      Galego EM. Some Schroeder-Bernstein type theorems for Banach spaces [Internet]. Journal of Mathematical Analysis and its Applications. 2008 ; 338( 1): 653-661.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2007.04.078
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ANÁLISE VARIACIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BURACHIK, Regina Sandra e SCHEIMBERG, Susana e SILVA, Paulo J. S. A note on the existence of zeroes of convexly regularized sums of maximal monotone operators. Journal of Mathematical Analysis and its Applications, v. 280, n. 2, p. 313-320, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0022-247x(03)00043-x. Acesso em: 08 nov. 2025.
    • APA

      Burachik, R. S., Scheimberg, S., & Silva, P. J. S. (2003). A note on the existence of zeroes of convexly regularized sums of maximal monotone operators. Journal of Mathematical Analysis and its Applications, 280( 2), 313-320. doi:10.1016/s0022-247x(03)00043-x
    • NLM

      Burachik RS, Scheimberg S, Silva PJS. A note on the existence of zeroes of convexly regularized sums of maximal monotone operators [Internet]. Journal of Mathematical Analysis and its Applications. 2003 ; 280( 2): 313-320.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/s0022-247x(03)00043-x
    • Vancouver

      Burachik RS, Scheimberg S, Silva PJS. A note on the existence of zeroes of convexly regularized sums of maximal monotone operators [Internet]. Journal of Mathematical Analysis and its Applications. 2003 ; 280( 2): 313-320.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1016/s0022-247x(03)00043-x
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EIDAM, José Carlos Corrêa et al. On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator. Journal of Mathematical Analysis and its Applications, v. 268, n. 2, p. 564-589, 2002Tradução . . Disponível em: https://doi.org/10.1006/jmaa.2001.7817. Acesso em: 08 nov. 2025.
    • APA

      Eidam, J. C. C., Pereira, A. L., Piccione, P., & Tausk, D. V. (2002). On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator. Journal of Mathematical Analysis and its Applications, 268( 2), 564-589. doi:10.1006/jmaa.2001.7817
    • NLM

      Eidam JCC, Pereira AL, Piccione P, Tausk DV. On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator [Internet]. Journal of Mathematical Analysis and its Applications. 2002 ; 268( 2): 564-589.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1006/jmaa.2001.7817
    • Vancouver

      Eidam JCC, Pereira AL, Piccione P, Tausk DV. On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator [Internet]. Journal of Mathematical Analysis and its Applications. 2002 ; 268( 2): 564-589.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1006/jmaa.2001.7817
  • Fonte: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Domingo et al. The spectrum of analytic mappings of bounded type. Journal of Mathematical Analysis and its Applications, v. 245, n. 2, p. 447-470, 2000Tradução . . Disponível em: https://doi.org/10.1006/jmaa.2000.6762. Acesso em: 08 nov. 2025.
    • APA

      García, D., Lourenço, M. L., Maestre, M., & Moraes, L. A. (2000). The spectrum of analytic mappings of bounded type. Journal of Mathematical Analysis and its Applications, 245( 2), 447-470. doi:10.1006/jmaa.2000.6762
    • NLM

      García D, Lourenço ML, Maestre M, Moraes LA. The spectrum of analytic mappings of bounded type [Internet]. Journal of Mathematical Analysis and its Applications. 2000 ; 245( 2): 447-470.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1006/jmaa.2000.6762
    • Vancouver

      García D, Lourenço ML, Maestre M, Moraes LA. The spectrum of analytic mappings of bounded type [Internet]. Journal of Mathematical Analysis and its Applications. 2000 ; 245( 2): 447-470.[citado 2025 nov. 08 ] Available from: https://doi.org/10.1006/jmaa.2000.6762

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025