Filtros : "Communications in Contemporary Mathematics" Limpar

Filtros



Refine with date range


  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, GEOMETRIA ALGÉBRICA

    Disponível em 2025-05-04Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e KASHUBA, Iryna e MARTIN, María Eugenia. A moment map for the variety of Jordan algebras. Communications in Contemporary Mathematics, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0219199724500159. Acesso em: 05 nov. 2024.
    • APA

      Gorodski, C., Kashuba, I., & Martin, M. E. (2024). A moment map for the variety of Jordan algebras. Communications in Contemporary Mathematics. doi:10.1142/S0219199724500159
    • NLM

      Gorodski C, Kashuba I, Martin ME. A moment map for the variety of Jordan algebras [Internet]. Communications in Contemporary Mathematics. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199724500159
    • Vancouver

      Gorodski C, Kashuba I, Martin ME. A moment map for the variety of Jordan algebras [Internet]. Communications in Contemporary Mathematics. 2024 ;[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199724500159
  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GEOMETRIA ALGÉBRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, v. 25, n. 8, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219199722500316. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., & Křižka, L. (2023). Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras. Communications in Contemporary Mathematics, 25( 8). doi:10.1142/S0219199722500316
    • NLM

      Futorny V, Křižka L. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 8):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199722500316
    • Vancouver

      Futorny V, Křižka L. Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 8):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199722500316
  • Source: Communications in Contemporary Mathematics. Unidade: IME

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, Danilo Gregorin e SICILIANO, Gaetano. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions. Communications in Contemporary Mathematics, v. 25, n. 2, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219199721501005. Acesso em: 05 nov. 2024.
    • APA

      Afonso, D. G., & Siciliano, G. (2023). Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions. Communications in Contemporary Mathematics, 25( 2). doi:10.1142/S0219199721501005
    • NLM

      Afonso DG, Siciliano G. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 2):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199721501005
    • Vancouver

      Afonso DG, Siciliano G. Normalized solutions to a Schrödinger–Bopp–Podolsky system under Neumann boundary conditions [Internet]. Communications in Contemporary Mathematics. 2023 ; 25( 2):[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199721501005
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, v. 20, n. 4, p. 1750033-1-1750033-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S021919971750033X. Acesso em: 05 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2018). Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, 20( 4), 1750033-1-1750033-15. doi:10.1142/S021919971750033X
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S021919971750033X
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S021919971750033X
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA DOS SÓLIDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, E. H. Gomes e SILVA, M. A. Jorge e MA, To Fu. Sharp decay rates for a class of nonlinear viscoelastic plate models. Communications in Contemporary Mathematics, v. 20, n. 2, p. 1750010-1-1750010-21, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219199717500109. Acesso em: 05 nov. 2024.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Ma, T. F. (2018). Sharp decay rates for a class of nonlinear viscoelastic plate models. Communications in Contemporary Mathematics, 20( 2), 1750010-1-1750010-21. doi:10.1142/S0219199717500109
    • NLM

      Tavares EHG, Silva MAJ, Ma TF. Sharp decay rates for a class of nonlinear viscoelastic plate models [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 2): 1750010-1-1750010-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199717500109
    • Vancouver

      Tavares EHG, Silva MAJ, Ma TF. Sharp decay rates for a class of nonlinear viscoelastic plate models [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 2): 1750010-1-1750010-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199717500109
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, MÉTODOS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Sérgio Henrique Monari e LEUYACC, Yony Raúl Santaria. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Communications in Contemporary Mathematics, v. 20, n. 8, p. 1750053-1-1750053-37, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219199717500535. Acesso em: 05 nov. 2024.
    • APA

      Soares, S. H. M., & Leuyacc, Y. R. S. (2018). Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Communications in Contemporary Mathematics, 20( 8), 1750053-1-1750053-37. doi:10.1142/S0219199717500535
    • NLM

      Soares SHM, Leuyacc YRS. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 8): 1750053-1-1750053-37.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199717500535
    • Vancouver

      Soares SHM, Leuyacc YRS. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 8): 1750053-1-1750053-37.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199717500535
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson e PACELLA, Filomena. Morse index of radial nodal solutions of Hénon type equations in dimension two. Communications in Contemporary Mathematics, v. 19, n. 3, p. 1650042-1-1650042-16, 2017Tradução . . Disponível em: https://doi.org/10.1142/S0219199716500425. Acesso em: 05 nov. 2024.
    • APA

      Moreira dos Santos, E., & Pacella, F. (2017). Morse index of radial nodal solutions of Hénon type equations in dimension two. Communications in Contemporary Mathematics, 19( 3), 1650042-1-1650042-16. doi:10.1142/S0219199716500425
    • NLM

      Moreira dos Santos E, Pacella F. Morse index of radial nodal solutions of Hénon type equations in dimension two [Internet]. Communications in Contemporary Mathematics. 2017 ; 19( 3): 1650042-1-1650042-16.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199716500425
    • Vancouver

      Moreira dos Santos E, Pacella F. Morse index of radial nodal solutions of Hénon type equations in dimension two [Internet]. Communications in Contemporary Mathematics. 2017 ; 19( 3): 1650042-1-1650042-16.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199716500425
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, v. 17, n. 3, p. 1450018-1-1450018-17, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0219199714500187. Acesso em: 05 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2015). Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, 17( 3), 1450018-1-1450018-17. doi:10.1142/S0219199714500187
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199714500187
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199714500187
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso e UBILLA, Pedro. Superlinear elliptic problems with sign changing coefficients. Communications in Contemporary Mathematics, v. 14, n. 1, p. 125001-1-1250001-21, 2012Tradução . . Disponível em: https://doi.org/10.1142/S0219199712500010. Acesso em: 05 nov. 2024.
    • APA

      Massa, E. T., & Ubilla, P. (2012). Superlinear elliptic problems with sign changing coefficients. Communications in Contemporary Mathematics, 14( 1), 125001-1-1250001-21. doi:10.1142/S0219199712500010
    • NLM

      Massa ET, Ubilla P. Superlinear elliptic problems with sign changing coefficients [Internet]. Communications in Contemporary Mathematics. 2012 ; 14( 1): 125001-1-1250001-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199712500010
    • Vancouver

      Massa ET, Ubilla P. Superlinear elliptic problems with sign changing coefficients [Internet]. Communications in Contemporary Mathematics. 2012 ; 14( 1): 125001-1-1250001-21.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199712500010
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent. Communications in Contemporary Mathematics, 2010Tradução . . Disponível em: http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf. Acesso em: 05 nov. 2024.
    • APA

      Moreira dos Santos, E. (2010). Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent. Communications in Contemporary Mathematics. Recuperado de http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf
    • NLM

      Moreira dos Santos E. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent [Internet]. Communications in Contemporary Mathematics. 2010 ;[citado 2024 nov. 05 ] Available from: http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf
    • Vancouver

      Moreira dos Santos E. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent [Internet]. Communications in Contemporary Mathematics. 2010 ;[citado 2024 nov. 05 ] Available from: http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SINGULARIDADES, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS, SISTEMAS DINÂMICOS, SUPERFÍCIES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO-FUSTER, M. C e RUAS, Maria Aparecida Soares e TARI, Farid. Asymptotic curves on surfaces in R⁵. Communications in Contemporary Mathematics, v. 10, n. 3, p. 309-335, 2008Tradução . . Disponível em: https://doi.org/10.1142/S0219199708002806. Acesso em: 05 nov. 2024.
    • APA

      Romero-Fuster, M. C., Ruas, M. A. S., & Tari, F. (2008). Asymptotic curves on surfaces in R⁵. Communications in Contemporary Mathematics, 10( 3), 309-335. doi:10.1142/S0219199708002806
    • NLM

      Romero-Fuster MC, Ruas MAS, Tari F. Asymptotic curves on surfaces in R⁵ [Internet]. Communications in Contemporary Mathematics. 2008 ; 10( 3): 309-335.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199708002806
    • Vancouver

      Romero-Fuster MC, Ruas MAS, Tari F. Asymptotic curves on surfaces in R⁵ [Internet]. Communications in Contemporary Mathematics. 2008 ; 10( 3): 309-335.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219199708002806

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024