Filtros : "Advances in Differential Equations" Removido: "IME" Limpar

Filtros



Refine with date range


  • Source: Advances in Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e NASCIMENTO, Wanderley Nunes do. A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, v. 23, n. 11-12, p. 847-888, 2017Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835. Acesso em: 28 nov. 2025.
    • APA

      Ebert, M. R., & Nascimento, W. N. do. (2017). A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, 23( 11-12), 847-888. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • NLM

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2025 nov. 28 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • Vancouver

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2025 nov. 28 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
  • Source: Advances in Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIMENTA, Marcos T. O e SOARES, Sérgio Henrique Monari. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations, v. 19, n. 1-2, p. 31-50, 2014Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Pimenta, M. T. O., & Soares, S. H. M. (2014). Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations, 19( 1-2), 31-50.
    • NLM

      Pimenta MTO, Soares SHM. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations. 2014 ; 19( 1-2): 31-50.[citado 2025 nov. 28 ]
    • Vancouver

      Pimenta MTO, Soares SHM. Singularly perturbed biharmonic problems with superlinear nonlinearities. Advances in Differential Equations. 2014 ; 19( 1-2): 31-50.[citado 2025 nov. 28 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025