Filtros : "Martínez, José Mário" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    Disponível em 2025-04-15Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e MARTÍNEZ, José Mário. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00572-w. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Haeser, G., & Martínez, J. M. (2024). Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications. doi:10.1007/s10589-024-00572-w
    • NLM

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2024 ;[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
    • Vancouver

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2024 ;[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, ALGORITMOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A PDE-informed optimization algorithm for river flow predictions. Numerical Algorithms, v. 96, n. 1, p. 289-304, 2024Tradução . . Disponível em: https://doi.org/10.1007/s11075-023-01647-1. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2024). A PDE-informed optimization algorithm for river flow predictions. Numerical Algorithms, 96( 1), 289-304. doi:10.1007/s11075-023-01647-1
    • NLM

      Birgin EJG, Martínez JM. A PDE-informed optimization algorithm for river flow predictions [Internet]. Numerical Algorithms. 2024 ; 96( 1): 289-304.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11075-023-01647-1
    • Vancouver

      Birgin EJG, Martínez JM. A PDE-informed optimization algorithm for river flow predictions [Internet]. Numerical Algorithms. 2024 ; 96( 1): 289-304.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11075-023-01647-1
  • Source: Abstracts. Conference titles: Conference on Optimization - OP23. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. 2023, Anais.. Philadelphia: SIAM, 2023. Disponível em: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2023). Block coordinate descent for smooth nonconvex constrained minimization. In Abstracts. Philadelphia: SIAM. Recuperado de https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2024 nov. 03 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Abstracts. 2023 ;[citado 2024 nov. 03 ] Available from: https://www.siam.org/Portals/0/Conferences/OP/OP23_ABSTRACTS.pdf
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: INTERPOLAÇÃO, MÉTODOS ITERATIVOS, APROXIMAÇÃO POR MÍNIMOS QUADRADOS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, v. 81, p. 689–715, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00344-w. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, 81, 689–715. doi:10.1007/s10589-021-00344-w
    • NLM

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
    • Vancouver

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PROGRAMAÇÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA MÉTODOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e BUENO, Luís Felipe e MARTÍNEZ, José Mário. On the complexity of solving feasibility problems with regularized models. Optimization Methods and Software, v. 37, n. 2, p. 405-424, 2022Tradução . . Disponível em: https://doi.org/10.1080/10556788.2020.1786564. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Bueno, L. F., & Martínez, J. M. (2022). On the complexity of solving feasibility problems with regularized models. Optimization Methods and Software, 37( 2), 405-424. doi:10.1080/10556788.2020.1786564
    • NLM

      Birgin EJG, Bueno LF, Martínez JM. On the complexity of solving feasibility problems with regularized models [Internet]. Optimization Methods and Software. 2022 ; 37( 2): 405-424.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1080/10556788.2020.1786564
    • Vancouver

      Birgin EJG, Bueno LF, Martínez JM. On the complexity of solving feasibility problems with regularized models [Internet]. Optimization Methods and Software. 2022 ; 37( 2): 405-424.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1080/10556788.2020.1786564
  • Source: SIAM Journal on Numerical Analysis. Unidade: IME

    Subjects: ANÁLISE NUMÉRICA, PESQUISA OPERACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations. SIAM Journal on Numerical Analysis, v. 60, n. 6, p. 3145-3180, 2022Tradução . . Disponível em: https://doi.org/10.1137/20M1388024. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations. SIAM Journal on Numerical Analysis, 60( 6), 3145-3180. doi:10.1137/20M1388024
    • NLM

      Birgin EJG, Martínez JM. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations [Internet]. SIAM Journal on Numerical Analysis. 2022 ; 60( 6): 3145-3180.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1137/20M1388024
    • Vancouver

      Birgin EJG, Martínez JM. Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations [Internet]. SIAM Journal on Numerical Analysis. 2022 ; 60( 6): 3145-3180.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1137/20M1388024
  • Source: Journal of Global Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS NUMÉRICOS, ANÁLISE NUMÉRICA, PESQUISA OPERACIONAL, CIÊNCIA DA COMPUTAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMARAL, V. S. et al. On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization, v. 84, p. 527-561, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10898-022-01168-6. Acesso em: 03 nov. 2024.
    • APA

      Amaral, V. S., Andreani, R., Birgin, E. J. G., Marcondes, D. M. S. V., & Martínez, J. M. (2022). On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. Journal of Global Optimization, 84, 527-561. doi:10.1007/s10898-022-01168-6
    • NLM

      Amaral VS, Andreani R, Birgin EJG, Marcondes DMSV, Martínez JM. On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization [Internet]. Journal of Global Optimization. 2022 ; 84 527-561.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10898-022-01168-6
    • Vancouver

      Amaral VS, Andreani R, Birgin EJG, Marcondes DMSV, Martínez JM. On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization [Internet]. Journal of Global Optimization. 2022 ; 84 527-561.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10898-022-01168-6
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: Journal of Computational and Applied Mathematics. Unidade: IME

    Subjects: ANÁLISE NUMÉRICA, PROGRAMAÇÃO NÃO LINEAR, PESQUISA OPERACIONAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Inexact restoration for derivative-free expensive function minimization and applications. Journal of Computational and Applied Mathematics, v. 410, n. artigo 114193, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cam.2022.114193. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2022). Inexact restoration for derivative-free expensive function minimization and applications. Journal of Computational and Applied Mathematics, 410( artigo 114193), 1-15. doi:10.1016/j.cam.2022.114193
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Inexact restoration for derivative-free expensive function minimization and applications [Internet]. Journal of Computational and Applied Mathematics. 2022 ; 410( artigo 114193): 1-15.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.cam.2022.114193
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Inexact restoration for derivative-free expensive function minimization and applications [Internet]. Journal of Computational and Applied Mathematics. 2022 ; 410( artigo 114193): 1-15.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.cam.2022.114193
  • Source: TOP. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, v. 29, n. 2, p. 417-441, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11750-020-00559-w. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2021). On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, 29( 2), 417-441. doi:10.1007/s11750-020-00559-w
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, COMPUTABILIDADE E COMPLEXIDADE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário e RAMOS, Alberto. On constrained optimization with nonconvex regularization. Numerical Algorithms, v. 86, n. 3, p. 1165-1188, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11075-020-00928-3. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Martínez, J. M., & Ramos, A. (2021). On constrained optimization with nonconvex regularization. Numerical Algorithms, 86( 3), 1165-1188. doi:10.1007/s11075-020-00928-3
    • NLM

      Birgin EJG, Martínez JM, Ramos A. On constrained optimization with nonconvex regularization [Internet]. Numerical Algorithms. 2021 ; 86( 3): 1165-1188.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11075-020-00928-3
    • Vancouver

      Birgin EJG, Martínez JM, Ramos A. On constrained optimization with nonconvex regularization [Internet]. Numerical Algorithms. 2021 ; 86( 3): 1165-1188.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11075-020-00928-3
  • Source: Optimization Letters. Unidade: IME

    Assunto: OTIMIZAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the use of third-order models with fourth-order regularization for unconstrained optimization. Optimization Letters, v. 14, n. 4, p. 815-838, 2020Tradução . . Disponível em: https://doi.org/10.1007/s11590-019-01395-z. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2020). On the use of third-order models with fourth-order regularization for unconstrained optimization. Optimization Letters, 14( 4), 815-838. doi:10.1007/s11590-019-01395-z
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the use of third-order models with fourth-order regularization for unconstrained optimization [Internet]. Optimization Letters. 2020 ; 14( 4): 815-838.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11590-019-01395-z
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the use of third-order models with fourth-order regularization for unconstrained optimization [Internet]. Optimization Letters. 2020 ; 14( 4): 815-838.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11590-019-01395-z
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE DE ALGORITMOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, v. 35, n. 5, p. 885-920, 2020Tradução . . Disponível em: https://doi.org/10.1080/10556788.2020.1746962. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2020). Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, 35( 5), 885-920. doi:10.1080/10556788.2020.1746962
    • NLM

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
    • Vancouver

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
  • Source: Mathematics of Computation. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, v. 89, p. 253-278, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3445. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2020). Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, 89, 253-278. doi:10.1090/mcom/3445
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1090/mcom/3445
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1090/mcom/3445
  • Source: Conference book. Conference titles: International Conference on Continuous Optimization - ICCOPT. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. 2019, Anais.. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS), 2019. Disponível em: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. In Conference book. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS). Recuperado de https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2024 nov. 03 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2024 nov. 03 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
  • Source: Program & abstracts book. Conference titles: International Congress on Industrial and Applied Mathematics - ICIAM. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. 2019, Anais.. Madrid: Sociedad Española de Matemática Aplicada (SeMA), 2019. Disponível em: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. In Program & abstracts book. Madrid: Sociedad Española de Matemática Aplicada (SeMA). Recuperado de https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Program & abstracts book. 2019 ;[citado 2024 nov. 03 ] Available from: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Program & abstracts book. 2019 ;[citado 2024 nov. 03 ] Available from: https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
  • Source: Pré-Anais. Conference titles: Simpósio Brasileiro de Pesquisa Operacional - SBPO. Unidade: IME

    Subjects: OTIMIZAÇÃO RESTRITA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário e PRUDENTE, Leandro da Fonseca. Global nonlinear programming with possible infeasibility and finite termination. 2012, Anais.. Rio de Janeiro: SOBRAPO, 2012. Disponível em: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., Martínez, J. M., & Prudente, L. da F. (2012). Global nonlinear programming with possible infeasibility and finite termination. In Pré-Anais. Rio de Janeiro: SOBRAPO. Recuperado de http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf
    • NLM

      Birgin EJG, Martínez JM, Prudente L da F. Global nonlinear programming with possible infeasibility and finite termination [Internet]. Pré-Anais. 2012 ;[citado 2024 nov. 03 ] Available from: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf
    • Vancouver

      Birgin EJG, Martínez JM, Prudente L da F. Global nonlinear programming with possible infeasibility and finite termination [Internet]. Pré-Anais. 2012 ;[citado 2024 nov. 03 ] Available from: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0108.pdf
  • Source: Numerical Algorithms. Unidades: ICMC, IME

    Assunto: ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRETTA, Marina e BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numerical Algorithms, v. 53, n. 1, p. 23-52, 2010Tradução . . Disponível em: https://doi.org/10.1007/s11075-009-9289-9. Acesso em: 03 nov. 2024.
    • APA

      Andretta, M., Birgin, E. J. G., & Martínez, J. M. (2010). Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numerical Algorithms, 53( 1), 23-52. doi:10.1007/s11075-009-9289-9
    • NLM

      Andretta M, Birgin EJG, Martínez JM. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [Internet]. Numerical Algorithms. 2010 ; 53( 1): 23-52.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11075-009-9289-9
    • Vancouver

      Andretta M, Birgin EJG, Martínez JM. Partial spectral projected gradient method with active-set strategy for linearly constrained optimization [Internet]. Numerical Algorithms. 2010 ; 53( 1): 23-52.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11075-009-9289-9
  • Source: Applied Optics. Unidade: IME

    Assunto: OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABRANTES, Ricardo Luiz de Andrade et al. Estimation of the thickness and the optical parameters of several stacked thin films using optimization. Applied Optics, v. 47, n. 28, p. 5208-5220, 2008Tradução . . Disponível em: https://doi.org/10.1364/ao.47.005208. Acesso em: 03 nov. 2024.
    • APA

      Abrantes, R. L. de A., Birgin, E. J. G., Chambouleyron, I., Martínez, J. M., & Ventura, S. D. (2008). Estimation of the thickness and the optical parameters of several stacked thin films using optimization. Applied Optics, 47( 28), 5208-5220. doi:10.1364/ao.47.005208
    • NLM

      Abrantes RL de A, Birgin EJG, Chambouleyron I, Martínez JM, Ventura SD. Estimation of the thickness and the optical parameters of several stacked thin films using optimization [Internet]. Applied Optics. 2008 ; 47( 28): 5208-5220.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1364/ao.47.005208
    • Vancouver

      Abrantes RL de A, Birgin EJG, Chambouleyron I, Martínez JM, Ventura SD. Estimation of the thickness and the optical parameters of several stacked thin films using optimization [Internet]. Applied Optics. 2008 ; 47( 28): 5208-5220.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1364/ao.47.005208
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, v. 39, n. 1, p. 1-16, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9050-z. Acesso em: 03 nov. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, 39( 1), 1-16. doi:10.1007/s10589-007-9050-z
    • NLM

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
    • Vancouver

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s10589-007-9050-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024