Filtros : "ELETROFISIOLOGIA" "Roque, Antônio Carlos" "FFCLRP" Removidos: "FCFRP-DCBM" "GONCALVES, LIONEL SEGUI" Limpar

Filtros



Limitar por data


  • Fonte: Channels. Unidades: FFCLRP, FMRP

    Assuntos: MEMBRANAS CELULARES, CANAIS DE POTÁSSIO, ELETROFISIOLOGIA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CEBALLOS, Cesar Celis et al. Non-Decaying postsynaptics potentials and delayed spikes in hippocampal pyramidal neurons generated by a zero slope conductance created by the persistent Na+ current. Channels, v. 12, n. 1, p. 81-88, 2018Tradução . . Disponível em: https://doi.org/10.1080/19336950.2018.1433940. Acesso em: 01 jun. 2024.
    • APA

      Ceballos, C. C., Pena, R. F. de O., Roque, A. C., & Leão, R. M. X. (2018). Non-Decaying postsynaptics potentials and delayed spikes in hippocampal pyramidal neurons generated by a zero slope conductance created by the persistent Na+ current. Channels, 12( 1), 81-88. doi:10.1080/19336950.2018.1433940
    • NLM

      Ceballos CC, Pena RF de O, Roque AC, Leão RMX. Non-Decaying postsynaptics potentials and delayed spikes in hippocampal pyramidal neurons generated by a zero slope conductance created by the persistent Na+ current [Internet]. Channels. 2018 ; 12( 1): 81-88.[citado 2024 jun. 01 ] Available from: https://doi.org/10.1080/19336950.2018.1433940
    • Vancouver

      Ceballos CC, Pena RF de O, Roque AC, Leão RMX. Non-Decaying postsynaptics potentials and delayed spikes in hippocampal pyramidal neurons generated by a zero slope conductance created by the persistent Na+ current [Internet]. Channels. 2018 ; 12( 1): 81-88.[citado 2024 jun. 01 ] Available from: https://doi.org/10.1080/19336950.2018.1433940
  • Fonte: Physical Review E. Unidade: FFCLRP

    Assuntos: ELETROFISIOLOGIA, CINÉTICA, NEUROLOGIA, NEURÔNIOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENA, Rodrigo F. O. et al. Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons. Physical Review E, v. 97, n. 4-1, 2018Tradução . . Disponível em: https://doi.org/10.1103/physreve.97.042408. Acesso em: 01 jun. 2024.
    • APA

      Pena, R. F. O., Ceballos, C. C., Lima, V., & Roque, A. C. (2018). Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons. Physical Review E, 97( 4-1). doi:10.1103/physreve.97.042408
    • NLM

      Pena RFO, Ceballos CC, Lima V, Roque AC. Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons [Internet]. Physical Review E. 2018 ; 97( 4-1):[citado 2024 jun. 01 ] Available from: https://doi.org/10.1103/physreve.97.042408
    • Vancouver

      Pena RFO, Ceballos CC, Lima V, Roque AC. Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons [Internet]. Physical Review E. 2018 ; 97( 4-1):[citado 2024 jun. 01 ] Available from: https://doi.org/10.1103/physreve.97.042408
  • Fonte: Frontiers in Computational Neuroscience. Unidade: FFCLRP

    Assuntos: NEUROCIÊNCIAS, CIÊNCIA DA COMPUTAÇÃO, ELETROFISIOLOGIA, REDES NEURAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMOV, Petar et al. Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, 2016Tradução . . Disponível em: https://doi.org/10.3389/fncom.2016.00023. Acesso em: 01 jun. 2024.
    • APA

      Tomov, P., Pena, R. F. O., Roque, A. C., & Zaks, M. A. (2016). Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience. doi:10.3389/fncom.2016.00023
    • NLM

      Tomov P, Pena RFO, Roque AC, Zaks MA. Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2016 ;[citado 2024 jun. 01 ] Available from: https://doi.org/10.3389/fncom.2016.00023
    • Vancouver

      Tomov P, Pena RFO, Roque AC, Zaks MA. Mechanisms of self-sustained oscillatory states in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2016 ;[citado 2024 jun. 01 ] Available from: https://doi.org/10.3389/fncom.2016.00023
  • Fonte: Frontiers in Computational Neuroscience. Unidade: FFCLRP

    Assuntos: ELETROFISIOLOGIA, CÓRTEX CEREBRAL, FÍSICA COMPUTACIONAL (MODELOS)

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMOV, Petar et al. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, v. 8, 2014Tradução . . Disponível em: https://doi.org/10.3389/fncom.2014.00103. Acesso em: 01 jun. 2024.
    • APA

      Tomov, P., Pena, R. F. O., Zaks, M. A., & Roque, A. C. (2014). Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in Computational Neuroscience, 8. doi:10.3389/fncom.2014.00103
    • NLM

      Tomov P, Pena RFO, Zaks MA, Roque AC. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2014 ; 8[citado 2024 jun. 01 ] Available from: https://doi.org/10.3389/fncom.2014.00103
    • Vancouver

      Tomov P, Pena RFO, Zaks MA, Roque AC. Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types [Internet]. Frontiers in Computational Neuroscience. 2014 ; 8[citado 2024 jun. 01 ] Available from: https://doi.org/10.3389/fncom.2014.00103

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024